Читаем Музыка сфер. Астрономия и математика полностью

ДВЕНАДЦАТЕРИЧНАЯ И ШЕСТИДЕСЯТЕРИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ В АСТРОНОМИИ

В современном обществе, в котором практически повсеместно используется десятичная система счисления, сутки делятся на 24 часа, час — на 60 минут, минута — на 60 секунд. Главная заслуга в этом принадлежит учёным Месопотамии, Древнего Египта и Древней Греции. Вавилонские математики использовали шестидесятеричную систему счисления, то есть систему счисления по основанию 60. Эта система счисления сохранилась и в астрономии, где используется при измерении углов, координат и времени. Возможно, математические открытия вавилонян состоялись благодаря тому, что число 60 имеет много делителей (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60), что упрощает действия с дробями. Вавилоняне использовали настоящую позиционную систему счисления, в которой цифры, записанные слева, обозначали величины больших порядков, как и в десятичной системе. Однако им не был известен эквивалент десятичной запятой, поэтому простота расчётов с дробями была для них очень важной.

Большинство историков считают, что первыми день на части разделили египтяне, которые примерно в 1500 году до н. э. создали солнечные часы в форме буквы T. Их циферблат был разделён на 12 частей, так как египтяне частично использовали двенадцатеричную систему счисления.

День и ночь делились на 12 частей. Таким образом, сутки делились на 24 часа, имевших, однако, неодинаковую продолжительность. Часы неизменной продолжительности ввёл Гиппарх Никейский

(ок. 190 года до н. э. — ок. 120 года до н. э.), который первым стая делить день на 24 равноденственных часа (он использовал 12 световых часов и 12 ночных часов в дни весеннего и осеннего равноденствия). Несмотря на его предложение, в течение многих веков люди по-прежнему использовали часы разной продолжительности в зависимости от времени года. Часы фиксированной продолжительности стали применяться только с появлением в Европе первых механических часов. Гиппарх и другие древнегреческие астрономы использовали различные методы, созданные вавилонянами и шумерами. Эратосфен (276 год до н. э.- 194 год до н. э.) разделил круг на 60 равных частей и определил систему горизонтальных линий, соединявших точки земной поверхности одинаковой широты. Сто лет спустя Гиппарх дополнил эту систему параллельными линиями, указывавшими долготу. Лишь в 150 году н. э. Клавдий Птолемей в «Альмагесте», взяв за основу труды предшественников, разделил каждый из 360 градусов широты и долготы на более мелкие части: minutae primae («первая минута») — которые стали называться минутами, а те, в свою очередь, на minutae secundae(«вторые минуты»), которые стали называться секундами. Минуты и секунды начали использоваться лишь спустя несколько веков после выхода в свет «Альмагеста». Циферблаты часов делились на 2, 3, 4 и даже на 12 частей, но не на 60. Люди, как правило, не обращали внимания на минуты, пока в конце XVI века не появились первые механические часы.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика