Читаем Музыка сфер. Астрономия и математика полностью

Фотографии Луны, сделанные 28 октября 2004 года из Челси, Великобритания (справа), и из Монреаля (Канада). Луна расположена близко к Земле, поэтому при наблюдении из двух точек, отстоящих друг от друга на 5520 км, она будет выглядеть по-разному. Две фотографии были наложены друг на друга так, чтобы изображённые на них звёзды совпали.

Если мы будем наблюдать за Луной на фоне звёздного неба из двух разных точек земного шара, то сможем вычислить расстояние до неё, зная расстояние между двумя точками, из которых производятся наблюдения. Рассмотрим схему:

Согласно элементарным формулам тригонометрии, имеем:

Следовательно, искомое расстояние будет равно:

В качестве приближённого значения тангенса мы использовали значение самого угла (это соотношение справедливо для малых углов).

Можно определить несколько разновидностей параллакса. Вернёмся к предыдущей схеме: если мы будем считать, что точки A и B — это точки, в которых находится Земля, когда она располагается дальше всего от Солнца, получим годовой параллакс. Длина основания треугольника будет равна расстоянию между этими точками, то есть удвоенному расстоянию между Землёй и Солнцем — примерно 300 млн километров. 150 млн километров, разделяющие Землю и Солнце, называются астрономической единицей (а.е.). Определив угол параллакса p, получим, что расстояние до звезды (в километрах) равно d= 300 000 000/p, где угол p выражен в радианах.

<p>Как оценить параллакс на пальцах</p>

Это очень простое упражнение заключается в том, чтобы посмотреть на палец руки на фоне какого-то удалённого объекта, например стены. Вытянем вперёд правую руку и поднимем указательный палец вверх. Закроем левый глаз и запомним, где находится палец относительно фона. Затем закроем правый глаз и вновь отметим, где находится палец относительно стены. Положение пальца будет меняться в зависимости от того, каким глазом мы смотрим.

Это же явление используется в астрономии, единственным различием является масштаб. Именно благодаря тому, что мы смотрим на мир двумя глазами, наш мозг может оценивать расстояния до предметов. В любом сувенирном магазине продаются картинки, на которых дважды изображена одна и та же фотография. В действительности эти фотографии сделаны с разных точек, отстоящих друг от друга на несколько сантиметров. Если мы посмотрим на эти фотографии через специальные очки, наш мозг объединит два изображения в одно объёмное. В подобных игрушках используется эффект параллакса.

Наблюдение параллакса на пальцах.

Если мы посмотрим на две одинаковые фотографии через окуляры, наш мозг объединит два изображения в одно, объёмное, в то время как по отдельности фотографии кажутся совершенно плоскими.

При показе фильмов в формате 3D используется точно такой же принцип. Фильм снимается с двух камер, расположенных на определённом расстоянии, а затем оба изображения показываются на экране кинотеатра одновременно. Для просмотра фильма в 3D нужны специальные очки, в которых каждый глаз видит только одно из демонстрируемых изображений. Когда наш мозг объединяет эти изображения в единое целое, нам кажется, что мы смотрим трёхмерный фильм. Эффект 3D создаётся разными способами. К примеру, можно использовать поляризационные очки с разной поляризацией линз или очки, в которых одна линза окрашена в красный цвет, другая — в синий: в этом случае две версии фильма снимаются через фильтры разного цвета.

* * *
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика