Читаем Музыка сфер. Астрономия и математика полностью

Для наблюдения этого параллакса мы должны находиться на Солнце, что невозможно. Наблюдатели располагаются в разных точках земной поверхности и смотрят на Солнце с Земли. Они видят прохождение Венеры по диску Солнца по-разному — точно так же мы видим один и тот же предмет немного по-разному, когда смотрим на него отдельно правым и левым глазом.

Рассмотрим двух наблюдателей, которые располагаются в точках A и B одного меридиана (с целью упрощения расчётов) на разных широтах. Они видят Венеру как точку (или маленький круг) на диске Солнца в двух разных положениях, A' и B'. Сравнив результаты этих двух наблюдений (см. следующий рисунок), мы сможем измерить смещение: расстояние A'B' соответствует расстоянию между видимыми положениями Венеры при одновременном наблюдении из точек A и B.



По результатам наблюдений за движением Венеры в течение транзита можно изобразить на диске Солнца её траекторию. Если мы ведём наблюдения из точек A и B, получим две параллельные линии. Расстояние между ними будет параллаксным смещением Δβ, которое в любой момент времени будет соответствовать расстоянию A'B'. Чтобы упростить расчёты, будем считать, что центры Земли (О), Венеры (V) и Солнца (C), а также точки земной поверхности A и B, из которых ведётся наблюдение, расположены в одной плоскости. Углы при вершине P в треугольниках APV и BPC равны как вертикальные. Так как сумма углов любого треугольника равна 180°, выполняется следующее соотношение:

βv+β1=βs+β2

Введём угол Δβ, которым обозначим расстояние между различными положениями Венеры на диске Солнца (оно будет равно расстоянию A'B' в любой момент времени). Изменив порядок слагаемых, получим:

По определению, параллакс Венеры равен:


параллакс Солнца равен


Подставив эти выражения в приведённое выше уравнение, получим:


В частности, параллакс Солнца βs будет рассчитываться так:


где Δβ — расстояние между двумя траекториями Венеры, видимыми из различных точек земной поверхности, а отношение rt/rv можно рассчитать по третьему закону Кеплера. Куб этого отношения должен быть пропорционален квадрату отношения периодов обращения планет вокруг Солнца. Периоды обращения Венеры и Земли известны и равны 224,7 дня и 365,25 дня соответственно. Таким образом, параллакс Солнца βs удовлетворяет соотношению:

βs=0,38248 Δβ.

Δβ определяется на основе результатов наблюдений из точек A и B, находящихся на одном меридиане. Мы используем рисунок XVIII века, на котором изображена траектория Венеры, видимая из разных точек одного меридиана при транзите.

Рассчитать Δβ можно разными способами:

1. Простейший способ — непосредственное измерение по рисунку, приведённому на странице 159: достаточно рассмотреть отношение диаметра Солнца D на рисунке и угловой размер Солнца. Угловой размер Солнца равен 30 минутам дуги, выраженным в радианах. Имеем:


2. Также можно измерить хорды окружности на рисунке. Этот способ точнее, так как измерить длины хорд A1A2 и B1B2 всегда можно с большей точностью, чем расстояние между этими хордами A'B'.



Рисунок позволяет связать длины хорд A1A2и B1B2с расстоянием между ними, A'B'.


По теореме Пифагора для треугольников SB'B1 и SA'X1 получим


3. Вместо расстояний можно отсчитывать время. Достаточно рассмотреть соотношение


где tA и tB — время прохождения A1A2 и B1B2. Обозначив через t0 гипотетическое время транзита по всему диску Солнца, через t' — время, соответствующее Δβ, установим соотношение:


Использовать временные интервалы вместо расстояний следует с осторожностью. Как показано на следующем рисунке, следует различать время внешнего касания (C1 и C4) и внутреннего касания (C2 и С3) Венеры с диском Солнца. Внутренние касания всегда можно определить точнее, несмотря на искажения, вносимые эффектом чёрной капли. По этой причине в расчётах учитываются только моменты внутреннего касания.



Наиболее точно можно определить моменты внутреннего касания C2и C3, поэтому именно они используются в расчётах.


На основании результатов наблюдений транзита Венеры 1769 года, полученных в Вардё и Папеэте, получим следующие значения (с учётом того, что расстояние AB по прямой равно 11425 км).



Расстояние от Земли до Солнца, равное 1 астрономической единице, вычисленное тремя описанными выше методами.


Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика