Отдельный, парящий в воздухе пузырь представляет собой шар, и мы уже знаем, почему пузырь принимает именно эту форму. Причина заключается в том, что из всех существующих форм один только шар обладает наименьшей поверхностью при данном объеме. Другими словами, упругая мыльная пленка, стремясь сжать находящийся в ней воздух, принимает сферическую форму. Если бы пузырь имел другую форму, то при превращении в шар поверхность пленки должна была бы еще уменьшиться. Но если мы выдуем два пузыря в действительном соприкосновении друг с другом, то оба они должны принять такую форму, чтобы поверхность обоих шаровых отрезков и часть, общая обоим пузырям, которую я буду называть перегородкой, были наивозможно меньшей поверхностью, способной заключать в отдельности два данных количества воздуха. Таким образом, мыльный пузырь дает нам простой, удобный и вместе с тем наглядный путь для решения вопроса, который действительно является математической задачей. Предположим, что два пузыря, соединенные перегородкой, не равны друг другу и что рис. 67 представляет разрез через центры обоих пузырей.
На этом рисунке буквой
Условие относительно равенства углов не является независимым от условия, относящегося к кривизнам пленок; если одно из условий будет выполнено, то другое должно вытекать как следствие; это замечание справедливо и по отношению к условию, приведенному в начале этой главы, что общая поверхность пузырей должна быть наивозможно меньшей. Плато рассмотрел этот вопрос, как и все, касающееся мыльных пузырей, в своей напечатанной в Брюсселе книге «Statique des liquides» («Статика жидкостей»), которая является достойным — памятником блестящему исследователю. Он описывает в ней простое геометрическое построение, позволяющее точно вычертить оба пузыря и разделяющую их перегородку.
Из какой-либо точки С проведем три линии:
Теперь пересечем их четвертой прямой линией, проведенной на рисунке пунктиром. Получившиеся три точки пересечения являются центрами трех окружностей, соответствующих трем возможным — пузырям. Точка пересечения средней линии является центром окружности малого пузыря, из других же двух точек та, которая ближе к
Начертив некоторое количество таких пузырей на листе бумаги достаточно жирными линиями, чтобы лучше видеть их, наложите на них кусок стекла. Смочив стекло мыльной водой, выдуйте на нем половину пузыря, а затем половину другого пузыря в соединении с — первой. Теперь приготовим маленькую трубочку, лучше соломинку, с одним концом, залепленным сургучом, который потом прокалывается горячей булавкой, чтобы медленно выпускать воздух. С помощью этой соломинки будем осторожно вдувать в пузыри воздух или вытягивали его из них до тех пор, пока пузыри не достигнут тех же размеров, что и на чертеже, причем будем двигать стекло так, чтобы пузыри оказались как раз над соответствующим им местом чертежа. Вы увидите тогда, как пузыри автоматически разрешают нашу задачу, причем края пузырей в точности на всем своем протяжении — соответствуют сделанному вами чертежу.