Tai, Martin & Heald (2014) приходят к выводу, что в случае реализации самого пессимистичного сценария МГЭИК производство продовольствия в мире к 2050 году сократится на 16 % в сравнении с 2000 годом. Но здесь не учитывается ни адаптация, ни воздействие углекислого газа на урожайность культур, хотя оба фактора, как ожидается, окажут существенное, пусть и неопределенное, противодействие. Недавний метаанализ показал, что одна только адаптация культур может поднять урожайность на 7–15 % (Challinor et al., 2014).
Такое снижение объемов производства продовольствия имело бы катастрофические последствия для миллионов людей, но представляло бы лишь небольшой риск для цивилизации.
299
IPCC (2014), pp. 14–15.
300
Такого сокращения биоразнообразия не наблюдается ни при потеплении на 12 °C в раннем эоцене, ни при стремительных глобальных изменениях в ходе ПЭТМ, ни при быстрых региональных изменениях климата. Willis et al. (2010) утверждают: “Мы полагаем, что, хотя основополагающие механизмы этих прошлых изменений климата сильно отличались (например, это были природные, а не антропогенные процессы), темпы и масштабы изменения климата сравнимы с теми, которые прогнозируются в будущем, а следовательно, потенциально полезны для анализа будущего биотического ответа. Данные о прошлом свидетельствуют о быстрой реорганизации общества, миграциях, формировании новых экосистем и переходах из одного стабильного экосистемного состояния в другое, но почти ничего не говорят о масштабных вымираниях из за потепления климата”.
Подобные выводы делают Botkin et al. (2007), Dawson et al. (2011), Hof et al. (2011) и Willis & MacDonald (2011). Наиболее убедительным доказательством того, что потепление порой приводит к вымиранию, служит пермское массовое вымирание, которое, возможно, было связано с масштабным потеплением (см. примечание 91 к этой главе).
301
Этот критерий называется “температурой влажного термометра” и может становиться летальной примерно при 35 °C (Sherwood & Huber, 2010).
302
Рассчитано автором на основе данных из работы Sherwood & Huber (2010).
303
Как ни странно, ПЭТМ действительно не вызвал серьезных вымираний. Так, McInerney & Wing (2011) утверждают: “[В ходе ПЭТМ] у наземных и морских организмов сильно изменились ареалы обитания, произошла стремительная эволюция и изменилась трофическая экология, однако лишь малое количество групп, не считая бентоносных фораминифер [особых микроорганизмов], столкнулось с серьезными вымираниями”.
304
В недавней статье выдвигается предположение, что температура океана во время пермского массового вымирания, возможно, поднималась на целых 8 °C, что могло быть вызвано колоссальным повышением атмосферной концентрации CO2
(Cui & Kump, 2015). Поскольку геологических данных об этом периоде относительно немного, нельзя точно сказать, на сколько поднималась температура и какой была концентрация CO2. Хотя это лишь одна из множества предполагаемых причин пермского массового вымирания, неопределенность в ряде вопросов, а также наша неспособность однозначно сказать, что крупнейшее массовое вымирание произошло не из за быстрого потепления, не сулят нам ничего хорошего.305
Применение геоинженерии в качестве крайней меры может снизить общий экзистенциальный риск, даже если конкретная техника сопряжена с большим риском, чем само изменение климата. Можно придерживаться стратегии задействовать геоинженерию только в том маловероятном случае, если изменение климата окажется гораздо серьезнее, чем ожидается в настоящее время, и тем самым дать себе второй шанс.
Приведу упрощенный численный пример. Допустим, вероятность крайне серьезного изменения климата составляет 0,1 %, а вероятность того, что такое изменение климата приведет к массовому вымиранию, равняется 50 % при общем риске вымирания в 0,05 %. Допустим, геоинженерия решает климатическую проблему, но может вызвать вымирание с вероятностью 1 %. В таком случае не стоит применять техники геоинженерии прямо сейчас, поскольку риск в 1 % выше, чем общий риск в 0,05 %. Однако, если мы обратимся к геоинженерии только в случае крайне серьезного изменения климата, общий риск снизится: вероятность нашего вымирания составит всего 1 %, хотя в ином случае она составляла бы 50 %. Следовательно, такой условный подход к геоинженерии снизит общий риск вымирания с 0,05 до 0,001 %. Это также может случиться в более реалистичных моделях. Главное – дождаться возникновения ситуации, когда риск применения геоинженерии станет ощутимо ниже, чем риск ее неприменения. Подобная стратегия может быть также применима к другим типам экзистенциального риска.
306
Ehrlich (1969).
307
Из речи, произнесенной в 1969 году; цит. по: Mann (2018).
308
16,6 млн человек в 1960 х годах, 3,4 млн в 1970 х и примерно по 1,5 млн в среднем за десятилетие в последующие годы (Hasell & Roser, 2019). Обратите внимание, что учитываются только смерти в результате зафиксированного массового голода, а не все смерти, связанные с нехваткой продовольствия.
309