Шарики и дырки – просто
– Значит ли это, что физический мир состоит из математики?
– Возможно, что на определенном уровне описания мироздания становится невозможным адекватно отражать мир иначе, чем математически. Если вы читали популярные книги, скажем, по квантовой теории поля, то должны были заметить, что автору в определенный момент приходится сказать: «Мы не можем объяснить, как это происходит, но получается так-то и так-то…». Используемый ими коммуникационный ресурс неадекватен, потому что заставляет людей думать о маленьких частицах, а на деле это не так. Поэтому чем более фундаментальным становится описание реальности, тем больше оно использует математику, и различие между абстрактным и конкретным становится менее определенным. С другой стороны, я не хочу сказать, что конкретная Вселенная построена на математике. Но ее истинная природа может быть так далека от нашего, основанного на здравом смысле, представления о конкретном физическом объекте, что говорить о Вселенной как о состоящей из математики может быть чревато меньшими недоразумениями, чем говорить о ней как о состоящей из материи. Это очень сложный вопрос. Я действительно не знаю ответа.
– Я бы изобразила это следующим образом: реальность – это самый нижний слой, затем поверх него находится слой математики. Между этими двумя слоями есть взаимно однозначное соответствие, – сказала я. – А поверх этой конструкции – язык, только взаимно однозначного соответствия между математикой и языком нет, так что при переводе, как вы и сказали, кое-что теряется. Но тогда у меня возникает вопрос: если действительно существует взаимно однозначное соответствие между математикой и реальностью, не означает ли это по определению, что они суть одно и то же?
– Я полагаю, что проблема на данный момент заключается в том, что никакого взаимно однозначного соответствия у нас нет, так как даже самые лучше наши теории не являются абсолютно точными, – сказал Ледиман. – Но, конечно, можно думать, на каких основаниях оспаривать математическую природу реальности, если бы такое взаимно однозначное соответствие имелось. Даже не знаю. Я очень скептически отношусь к любым философским построениям, претендующим на то, чтобы объяснить различие между абстрактной математикой и математикой, наполненной субстанцией. Потому что, в конце концов, в каких терминах вам бы удалось объяснить это различие? По тем же причинам я отвергаю вопрос «А что вдыхает жизнь в уравнения?» Ведь что бы вы ни сказали, это будет не более чем метафорой, верно? Ведь вот вы скажете: «Здесь у нас абстрактная математика, и тогда актуальная Вселенная – это субструктура всех возможных структур, какие только тут могут быть. И тогда в чем разница между реализованной (инстанциированной[21]
) и не инстанциированной структурами?» Допустим, философ скажет, что существует первичное отношение инстанциации или еще что-нибудь – мало ли какой можно придумать метафизический язык, чтобы говорить об этом, но, на мой взгляд, это равносильно признанию, что бывает математика с волшебной пыльцой внутри. От подобного не может быть пользы. Ведь что может связывать такое с чем-то имеющим смысл? Когда вы хотите знать, как отвечает наука на вопрос «от чего бывают землетрясения?», вы обращаетесь к неким понятийным ресурсам, и эти ресурсы не пусты, потому что привязаны к наблюдениям. Но математика – чистая математика – не привязана к наблюдению. Если теория всего – математическая теория, то как мы можем это проверить? У нее должно быть какое-то содержание, отличающееся от одной только математики.– Я слышала, как некоторые люди говорят, что если бы мы действительно имели теорию всего, то она была бы непроверяемой, – вставила я.
– Хм, и действительно, – задумчиво сказал Ледиман. – Интересное мнение.
Я сама едва могла поверить, что после своего подросткового скептицизма защищала тезис о том, что в основе мира нет ничего, кроме математики. Мама была бы довольна, но как хорошо, что она этого не видит!