Читаем На переломе. Философские дискуссии 20-х годов полностью

Более того, один вид зависимости, устанавливаемый при помощи такого количественного определения, отличается при этом от других, один закон от другого, и притом уже не количественно, а качественно — как закономерности именно того, а не другого рода. Не случайно поэтому такие философы-математики, как Кутюра, например, считают предметом математики (логики, что тождественно, с их точки зрения) не количество, а качество — качественно друг от друга отличающиеся формы функциональных зависимостей, выражающих законы количественного сравнения, соотношения предметов. Всякое, следовательно, даже совершенно внешнее, безразличное к существу предмета количественное определение предполагает некоторый качественный момент, находящий себе выражение в том способе — «законе», по которому оно производится. Уже самые первые шаги в изучении количества, таким образом, обнаруживают перед нами, что в действительности количество и качество изолированно друг от друга не существуют, что всякое, даже чисто внешнее количественное определение содержит в себе некоторый качественный момент. А если при помощи этого определения находит себе выражение не чисто внешняя, случайная, произвольно нами устанавливаемая связь, а существенная для данных классов предметов зависимость, количественное определение становится очень мощным средством научного исследования. Но тут оно теряет уже свой характер внешности, безразличия к существу определяемых им предметов и, следовательно, перестает быть голым количественным определением. Из формального оно превращается в содержательное, из внешнего в существенное, из количества в меру — единство качественного и количественного определения.

Это последнее, в свою очередь, имеет место только там, где связи между предметами не рассматриваются изолированно от этих предметов, где они являются существенными именно для данных конкретных предметов, а не предметов вообще, тождественных между собой, абстрактных, неопределенных бескачественных иксов и игреков. Ибо по существу можно отображать лишь то, что этим существом действительно обладает. Однако ближе об этом впереди…

Об экстенсивном и

интенсивном количестве

Следуя за Гегелем, мы уже обнаружили в развитии числа два момента:

1. Число, как определенное число — численность (Anzahl), возникающее в процессе счета.

2. Число, как единство во множестве, как выражение количественной определенности.

В дальнейшем Гегель анализирует еще далее последнее понятие числа, подчеркивает в нем два момента, соответствующие развитию этого понятия:

а) Будучи единством во множестве, число может служить для отображения той или другой совокупности вещей, количественного отличения одной совокупности от другой, установления между различными совокупностями тождества (эквивалентности) и различия. Так, число «два» характеризует все возможные пары предметов — совокупность, состоящую из двух элементов, число «три» — тройки, «четыре» — четверки и т. д.

Современные математики называют такое, всегда относящееся к некоторой совокупности число — количественным (кардинальным) и отличают от возникающего при счете порядкового (ординального) числа. Между ними при этом идет спор о приоритете одного из этих чисел над другим. Гельмгольц, например, опираясь на человеческий опыт, считает ординальное число первичным и старается свести к нему количественное число. Кантор, Фреге, Рессель, Фосс и другие «исходят из понятия кардинального (количественного) числа как абстракции, не зависящей от особой природы множества объект о в» и пытаются чисто логически вывести из него, как вторичное, понятие ординального числа. Каждый, таким образом, фактически старается доказать, что математике не нужно пользоваться определением числа в его развитии, — необходимо выбрать какое-нибудь одно из определений, свести к нему все остальные и на нем строить в дальнейшем всю математику.

б) Но Гегель не останавливается, однако, и на этом количественном числе, относящемся всегда к некоторой совокупности, некоторому множеству объектов. Он переходит в дальнейшем к числу, характеризующему один предмет, и притом при помощи некоторого качества, его интенсивности-степени. Так, мы различаем одно освещение, звук, температуру, давление и т. д. по степени их интенсивности от других, более или менее «сильных», более или менее интенсивных. Число, характеризующее температуру воздуха в комнате, не относится уже ник какому множеству объектов — оно характеризует степень нагретости комнаты в отличие от других возможных степеней. Оно относится к некоторому изменяющемуся качеству и характеризует его в его изменении. С введением этого понятия о числе мы вступаем уже в несколько иную область.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже