Окончательно получаем, что луч света, испускаемый в области с определенным потенциалом тяготения из S
2 и имеющий при его испускании частоту v2, измеренную часами, находящимися в S2, обладает при его прибытии в S1 другой частотой v1, если последняя измеряется с помощью точно таких же часов, находящихся в S1. Заменим γh через потенциал тяготения Ф, взятый в S2 по отношению к S1, потенциал которой принят равным нулю. Далее, что соотношение, полученное нами для однородного гравитационного поля, справедливо также и для полей другого вида.В таком случае
(2a)
Полученный результат (справедливый, напомним, согласно своему выводу, в первом приближении) прежде всего можно применить следующим образом. Пусть v
0 – частота некоторого элементарного источника света, которая измеряется с помощью часов U, находящихся в том же месте, где и сам источник. Эта частота не зависит от расположения источника света вместе с часами. Теперь представим, что источник и часы размещены, к примеру, на поверхности Солнца (там находится наша система S2). Часть испущенного света доходит до Земли (S1), где мы часами U точно такой же конструкции, что и упомянутые выше, измеряем частоту v приходящего света. Следовательно, согласно соотношению (2а), имеем
Здесь Ф – (отрицательная) разность гравитационных потенциалов между поверхностью Солнца и поверхностью Земли.
Согласно нашим представлениям, спектральные линии солнечного света должны немного сместиться по сравнению с соответствующими спектральными линиями земных источников света в красную область спектра, а именно, на относительную величину
Это смещение можно было бы измерить, если бы были точно известны условия, при которых испускается солнечный свет. Но из-за того, что причины другого рода (такие как давление и температура) также влияют на положение центра тяжести спектральных линий, трудно установить, действительно ли существует выведенное выше соотношение, в котором учитывается влияние гравитационного потенциала[14]
.
Можно ли обратить время вспять? Похоже, в пользу этого предположения есть лишь несколько доводов, а против – вся Вселенная.
При поверхностном рассмотрении может показаться, что соотношения (2) или (2а) не имеют смысла. Может ли быть, чтобы при непрерывном испускании света из S
2 он прибывал S1 другой частотой, чем свет, вышедший из S2? Тем не менее, ответ на этот вопрос прост. Дело в том, что мы не можем рассматривать v2 и v1 просто как частоты (т. е. как числа периодов в секунду), потому что мы еще не установили времени в системе отсчета К. Величина v2 обозначает число периодов, отнесенное к единице времени часов U в S2, a v1 – число периодов, отнесенное к единице времени точно таких же часов U в S1. У нас нет никаких оснований допускать, что часы, которые расположены в точках с различными гравитационными потенциалами, должны рассматриваться как одинаково идущие. Наоборот, мы обязательно должны определить время в системе отсчета К таким образом, чтобы число гребней и минимумов волн между S2 и S1 не зависело от абсолютного значения времени, потому что рассматриваемый процесс по своей природе стационарен. Если это условие не выполнено, то мы приходим к определению времени, которое будет явно входить в законы природы, что, конечно, неестественно и нецелесообразно.Таким образом, нельзя сказать, что оба часовых механизма, в S
2 и S1, показывают правильное «время». Так, если мы определяем время в S1 часами U, то мы должны измерять время в S2 часами, которые идут в [1 + (Ф/с2)] раза медленнее, чем часы U, если их сравнить с часами U в одном и том же месте. Это связано с тем, что измеренная подобными часами частота рассмотренного выше луча света при его отправлении из S2
в согласии с формулой (2а), равна частоте v
1 того же луча света при его прибытии в S1.Отсюда вытекает следствие, представляющее фундаментальное значение для теории. Если скорость света измерять в различных местах ускоренной системы отсчета К’
в отсутствие гравитационного поля, пользуясь одинаково идущими часами U, то всюду будет получаться одно и то же значение. Исходя из нашего основного допущения, то же самое справедливо и для системы К. Однако из этого следует, что в местах с разными гравитационными потенциалами при измерении времени необходимо пользоваться по-разному идущими часами. В том месте, которое обладает гравитационным потенциалом Ф относительно начала координат, нужно при измерении времени применять часы, которые при перенесении их в начало координат шли бы в (1 + + Ф/с2) раза медленнее, чем те часы, которыми определяется время в начале координат. Если мы обозначим через с0 скорость света в начале координат, то скорость света с в некотором месте с гравитационным потенциалом Ф будет равна
(3)