Морис де Бройль, шестой герцог Брольи, воплотил мечту всех физиков-экспериментаторов: он создал идеальную лабораторию, абсолютно не стесняя себя в средствах. Принадлежность к аристократическому кругу позволила ему использовать для этого семейный особняк на улице Шатобриан, в самом центре Парижа. Герцог заполнил шкафы эпохи Людовика XV множеством электрических приборов, слуг сменил на целый батальон помощников и задумал комплексную программу исследований рентгеновского излучения и фотоэлектрического эффекта. Научная страсть де Бройля в конечном итоге заставила его младшего брата, Луи, свернуть с гуманитарной дорожки: тот забросил изучение средневековой истории ради карьеры физика. По словам Луи, Морис «признавал излучения, формируемые волнами и частицами, но не имел четкого представления об этом, не будучи теоретиком». За разъяснения взялся сам Луи, поскольку он глубоко изучил природу электромагнитного излучения на военной службе в годы Первой мировой войны, а затем работал радистом на Эйфелевой башне.
Возможно, именно железная конструкция башни привела Мориса к открытию: «После глубоких размышлений в одиночестве в 1923 году меня внезапно осенило: открытие, сделанное в 1905 году Эйнштейном, должно было распространяться на все материальные частицы, в том числе на электроны». Другими словами, если свет может обладать корпускулярными свойствами, то электроны должны также проявлять свойства волны. Де Бройль предложил тогда, что такая частица, как электрон, блуждающий свободно в пространстве, будет связана с волной, длина которой X = h/p, где р — физическая величина, названная импульсом и определяемая в целом как произведение массы частицы на ее скорость (р =m • v).
Получив диплом Французской академии наук, Морис де Бройль опубликовал в сентябре 1923 года две небольшие работы, содержавшие плоды его размышлений. К следующему году на основе этих тезисов герцог написал докторскую диссертацию. Его научный руководитель Поль Ланжевен, как и другие ученые, находился в некотором замешательстве — работа де Бройля казалась ему столь же изобретательной, сколь и маловероятной, поэтому он подкинул ее Эйнштейну, который тут же пришел в восторг. Он посчитал гипотезу де Бройля не только смелой, но и перспективной и заявил: «Я вижу здесь робкий луч света в одной из наиболее темных физических загадок».
Сам де Бройль искал способы подтвердить свою догадку. Он заметил, что если электроны с длиной волны, связанной с размером, равным межатомному расстоянию твердого вещества (около 10-10
м), будут спроецированы на стекло, то с другой стороны появится интерференционная картина. Интерференция — одно из явлений, наиболее ясно раскрывающих волновую природу любого объекта (подробнее см. статью «Интерференция волн», стр. 72-73).Американцы Клинтон Дэвиссон и Лестер Джермер осуществили подобный опыт в лаборатории Бэлла, а англичане Александр Рид и Джордж Томсон проделали то же самое в Абердинском университете. Обе группы ученых обнаружили, что какими бы ни были электроны, они вели себя как волны, проникая сквозь монокристалл никеля или тончайшую металлическую пластину.
Если бы электроны вели себя как частицы, то, достигая атомарной решетки твердого тела, они бы отскочили от нее в разных направлениях, словно крошечные мячики. Но регистрируя рассеянные электроны, ученые получили широкую дисперсию волнового профиля (см. рисунок).
Эксперименты позволили сделать безапелляционный вывод: электронам свойственно поведение, как у волны. Однако прорыв де Бройля, как это все чаще случалось с тем, что касалось квантов, больше ставил вопросов, чем давал ответов. Из чего состояли эти волны? Каким образом их интерпретировать? Как что-нибудь могло одновременно иметь две столь противоречивые природы, как волна и частица? Частицы концентрируются вокруг точек, а волны стремятся к тому, чтобы рассеиваться во все концы пространства, словно круги на водной глади от камня, брошенного в пруд. Уравнение де Бройля λ = h/p соединяло противоположные миры: λ является величиной волнообразного типа, р — корпускулярного. Материальные волны, в отличие от света, не связаны ни с каким полем, ни электрическим, ни магнитным, и могут проходить через вакуум при любой скорости, отличной от скорости света. Мяч, пересекая поле для гольфа на скорости 30 м/с, имеет длину волны λ = 1,9 х 10-34
м. Постоянная Планка h сказывается на повседневной жизни, но все же: как мяч может иметь столь незначительную и даже невообразимо малую длину волны?Если бы электроны были частицами, то они сосредоточились бы на детекторе, а если волнами — то были бы распределены по ряду детекторов, при этом количество частиц на каждом подчинялось бы волновой схеме. В итоге был получен второй результат.