Читаем На волне Вселенной. Шрёдингер. Квантовые парадоксы полностью

Уж если Макс Борн, который мог похвастаться солидными знаниями математики, должен был перерыть закрома своей памяти, чтобы вспомнить прошлые занятия по алгебре, можно представить эффект, произведенный статьей Гейзенберга на большинство физиков, которые все эти матрицы попросту игнорировали. Математика была абстрактной наукой и на взгляд новичка таила в себе что-то недосказанное, секретное. Даже для последующих физиков, привычных к языку матриц, расчеты Гейзенберга казались неявными, да они и не приводились полностью в статье «О квантовотеоретическом истолковании кинематических и механических соотношений». Стивен Вайнберг, лауреат Нобелевской премии по физике 1979 года, видел в матрицах нечто магическое: «Если то, что сделал Гейзенберг, озадачивает читателя, то вы, читатель, не одиноки. Несколько раз я пытался прочесть статью, написанную Гейзенбергом по возвращении с Гельголанда, и хотя, как мне кажется, я понимаю квантовую механику, мне никогда не удавалось уловить те мотивы, которые побудили Гейзенберга к математическим действиям в его работе».

Борн провел лето 1925 года вместе со своим ассистентом, математиком Паскуалем Иорданом, шлифуя идеи Гейзенберга, используя матрицы. В этой работе участвовал и сам Гейзенберг, сначала с помощью писем, затем — лично, когда вернулся с каникул. Наконец, эти трое опубликовали совместную статью, в которой изложили официальную версию матричной механики. Физикам эта работа известна под названием Dreimannerarbeit («Произведение трех мужчин»). И подход авторов был так же необычен, как и сам мир атомов.


Квантовый язык

Матрицы — это особые математические объекты, которые могут быть представлены в виде таблицы, состоящей из строк и столбцов, с произвольным числом в каждой клетке.

5-152
7/38-21
0-19/71

Обычно их пишут в скобках и без клеток:

5 -1 52

7/3 8 -21

0 -19/7 1

С матрицами можно производить различные операции (сложение, вычитание, умножение или деление), которые дают новые матрицы в соответствии с особыми математическими правилами.

Одним из их основных свойств является некоммутативность матричного произведения: А • В =/= В • А. Это означает, что хорошо известный принцип, согласно которому «порядок множителей не влияет на произведение», не выполняется. Чтобы привести более наглядный пример некоммутативности какой-либо операции, рассмотрим вращения в пространстве. Повороты математически могут быть представлены как произведение матриц. Пусть М и S — это две точки на сфере; если мы осуществляем два последовательных оборота вокруг осей, которые проходят через них, результат будет зависеть от направления (см. рисунок).

Объясняя таинственные правила Гейзенберга при помощи старых алгебраических методов, Борн и Йордан сформулировали одно из самых важных уравнений всей квантовой механики:

где Р и Q являются матрицами, представляющими количество движений (Р) и расположение (Q, i — корень от -1, a h — постоянная Планка. I — это единичная матрица, которая играет такую же роль в алгебре матриц, что и число 1 в арифметике.

В первом случае конечное расположение М и S — это М1 и S1. Во втором — это М2 и S2. Как можно увидеть, они не совпадают. Второй случай переносит точку М2 на другую сторону сферы.

Уравнение (1) означает, что произведение Р х Q дает матрицу, отличную от Q • Р. Из этого можно сделать вывод: каждое измерение материального объекта (например, электрона) меняет его. Таким образом, если вначале определяют положение, а затем импульс, результат отличается от того, который мы получим при измерении сначала импульса, а затем положения. Это удивительное наблюдение говорит о принципе неопределенности, как мы это увидим дальше. На тех уровнях, где h появляется исчезающе малой величиной, мы имеем дело с феноменами, которые можем наблюдать с помощью наших органов чувств, и можно предположить, что постоянная равна нулю, как в хитрости Больцмана, которую Планк использовал, чтобы сократить спектр излучения внутри печи.

Таким образом, если h → 0, тогда: Р • Q— Q • Р = 0, откуда: P • Q = Q • P.

Произведение вновь становится коммутативным, и мы оказываемся в обычной ситуации. Аналогично, расстояние между дискретными значениями стремится к нулю и доходит до него, что позволяет вернуться к классическому подходу. Уравнение (1) играет такую же роль углового камня матричной механики, как и уравнение Шрёдингера для волновой механики. На самом деле значительные трудности, возникающие с некоммутативностью матриц, означают, что мы работаем с квантовым состоянием.

В титанической работе на более чем 30 страницах Вольфганг Паули рассчитал уровни энергии Еn стационарных состояний атома водорода (знаменитая формула Бора), применяя идеи Гейзенберга и Борна до того, как Шрёдингер сделал то же самое со своим волновым уравнением. Несмотря на успех, это нововведение было не очень принято в физических кругах.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература