Их рассмотрение проводилось таким образом. Скорость света в воде определяется как скорость света в пустоте, деленная на показатель преломления (он для воды равен примерно 4/3), т. е. составляет около 225 тыс. км/с. Но электроны от радиоактивных источников могут иметь еще большую скорость — необходимо ведь только, чтобы она была меньше 300 тыс. км/с (они могут быть «сверхсветовыми» именно для этой среды). У каждого заряда есть собственное электрическое поле, которое должно при движении заряда за ним следовать, но оно-то ведь не может перемещаться со скоростью, большей скорости света в этой среде, и поэтому от электрона отрывается, т. е. меняется. Всякое изменение электромагнитного поля — это электромагнитная волна, надо теперь сосчитать длины волн, ее образующих, и показать, что этот спектр содержит частоты того голубого свечения, которые наблюдает Черенков. Нужно, кроме того, выяснить, как и на какой длине пути электрон восстановит свое поле, и оно снова будет готово оторваться — это покажет какова может быть интенсивность свечения. (Позже выяснилось, что схожие формулы независимо вывели много раньше О. Хевисайд и А. Зоммерфельд, но… не подумали о том, где такое явление может иметь место, и их работы были забыты.)
Все эти представления и расчеты точно подтвердились в экспериментах — новое явление было названо черенковским излучением, а Черенков, Тамм и Франк были удостоены в 1958 г. Нобелевской премии. Сейчас черенковские счетчики широко применяются в физике и технике: так, например, по интенсивности этого излучения в водных рубашках ядерных реакторов судят об их работе.
В принципе, к этому явлению близко примыкают и эффекты переходного излучения, которое предсказали в 1942 г. Виталий Лазаревич Гинзбург (1916–2009, Нобелевская премия 2003 г., но за другие работы) и И. М. Франк: если заряженная частица переходит из одной среды в другую, в которой скорость света меньше, то собственное поле заряда должно быстро перестроиться, но любое изменение поля во времени ведет к излучению или поглощению электромагнитных волн. Поэтому при таком переходе заряд может излучать, а спектр и интенсивность этого излучения будут зависеть от скоростей света в обеих средах. Эффекты переходного излучения проявляются не только при переходе одиночных зарядов из одной среды в другую: при переходе должно изменяться собственное электромагнитное поле, например, электрического диполя (молекулы из двух разных атомов и т. д.) — все такие образования также должны излучать.
Эти эффекты были подтверждены экспериментами, и на их основе также создаются измерительные приборы.
В одной из рукописей Эйнштейна 1920 г. есть фраза: «И тогда мне в голову пришла счастливейшая мысль в моей жизни». Позже он рассказал во время выступления в Японии: «Я сидел в кресле в бернском патентном бюро, как вдруг мне в голову пришла мысль: „В свободном падении человек не ощущает своего веса!" Я был поражен. Эта простая мысль произвела на меня огромное впечатление. Развив ее, я пришел к теории тяготения»[15]
.Эту мысль (она называется принципом эквивалентности Эйнштейна) мы и постараемся понять.
Ясно, что оставить теорию тяготения Ньютона без изменений нельзя — в ней ведь взаимодействие распространяется мгновенно, т. е. с бесконечной скоростью, и может, в принципе, разгонять тела до любой скорости — может придать телу скорость, большую скорости света. Еще в ходе работы над СТО Эйнштейн думает о том, как включить в нее гравитационное поле — трудности возникают уже потому, что в нем ведь все тела движутся ускоренно, а СТО не рассматривает ускоренное движение.
Но вот в той же рукописи он пишет: «Для наблюдателя, падающего с крыши, гравитационное поле, по крайней мере в его ближайшем окружении, не существует». И далее поясняет: если вместе с ним падают и другие предметы, то получается, что относительно некоторой, небольшой, локальной системы (с ним падающей) он может считать себя находящимся «в покое».