Читаем Наблюдения и озарения или Как физики выявляют законы природы полностью

Отметим, что сканирующий туннельный микроскоп, помимо вакуума, работает и в других средах, в том числе в воздухе, воде и криогенных жидкостях. Он применяется для исследования не только неорганических, но и органических веществ, в том числе вирусов и дезоксирибонуклеиновой кислоты (ДНК).

7. Микроскопия ближнего поля

Критерий Аббе, о котором мы говорили выше, или соответствующие ему критерий Рэлея и принцип неопределенностей Гейзенберга — все они утверждают, что невозможно рассмотреть объект, размеры которого меньше длины волны.

Но вот в 1928 г. в старейшем английском физическом журнале Philosophical Magazine появляется статья некоего Синга, в которой приводятся его снимки — не очень высокого, правда, качества — деталей предметов с размерами, в 3–5 раз меньшими длины волны!

Нонсенс? — Но статью рекомендует к печати А. Эйнштейн!

Следующую статью с чуть лучшими снимками Синг помещает в том же журнале в 1932 г., но затем замолкает. И молчание по поводу возможности или невозможности такого разрешения продолжается примерно 65 лет — точнее, все эти годы никто не подвергает сомнению критерий Аббе и ему соответствующие.

И вдруг прорыв: в ряде журналов почти одновременно начинают появляться снимки, нарушающие, казалось бы, самые святые положения теории, проводятся конференции, даже издаются учебники и начинается промышленный выпуск оптических микроскопов, в которых можно фотографировать большие молекулы. Сейчас можно увидеть снимки деталей, в 300 раз меньших длины волны света…

Что же происходит, нарушаются ли этим законы физики?

Оказывается, в течение многих десятилетий ученые обращали очень мало внимания на факт, давно известный в радиотехнике: поле излучения антенны можно, весьма условно, подразделить на две части: дальнее поле и ближнее поле. Уравнения Максвелла описывают, в принципе, дальнее поле: на расстоянии одной или даже нескольких длин волн от источника — именно в этой области электрическое и магнитное поля взаимно перпендикулярны, именно оно убывает обратно пропорционально расстоянию от источника и т. д. Ближнее поле быстро затухает в отдалении от источника, оно, в принципе, аналогично, а быть может, и просто соответствует той «шубе» частиц (и антенн?), которые мы рассматриваем в главах о частицах и полях.

Поэтому можно думать, что если дальнее поле волны проквантовано, т. е. представлено в виде совокупности квантов с определенными свойствами, то ближнее поле не является квантовым, или же в нем нельзя выделить определенные наборы квантов, т. е. в нем присутствуют при данной частоте все длины волн — эта проблема еще не решена. Но если есть все длины волн, то они могут отражать свойства малых деталей предметов.

Снимки в ближнем поле производятся, например, так: световод с заостренным кончиком подводится к снимаемому объекту на расстояние меньшее длины волны, т. е. на такое, в котором выходящее из него поле не разделилось на ближнее и дальнее. Рассматривается интерференционная картина между потоками света, выходящими из световода и отраженными от поверхности, эта картина фотографируется и добавочно увеличивается. (Исследуются и другие схемы.)

Сейчас можно только сказать, что область ближнего поля и ее возможности в микроскопии пока еще недостаточно изучены. Подождем новых исследований и изобретений…

Глава 2

Изобретение транзистора

Зарождение радиотехники потребовало создания детектора, т. е. устройства, пропускающего электрический ток только в одном направлении. Дело в том, что обычная радиопередача идет на волнах высокой (несущей) частоты, амплитуда или фаза которых меняются (модулируются) гораздо более низкой звуковой частотой. Поэтому ток, генерируемый на антенне приемника, является высокочастотным, и нужно сперва выделить из него колебания одного направления, а затем уже можно будет по одной линии пустить колебания высокой частоты (несущей), а по другой — полезный сигнал.

В первых радиоприемниках, их называли детекторными, такое выделение осуществлял обычно кристалл галенита (свинцового блеска) — его припаивали к одному концу цепи, а ко второму присоединяли иголку («кошачий ус») и, двигая ею по кристаллу, искали «точку», то есть место, в котором электроны могли проходить только в одну сторону, и тогда в наушниках возникал долгожданный шум, а иногда даже речь и музыка[46].

Однако ламповые диоды, основанные на эффекте Эдисона, о которых мы говорили в главе «Электротехника и радиотехника», были надежнее, а звуковые колебания могли в таких приемниках усиливаться триодами. Казалось, что ламповая электроника одержала бесспорную и окончательную победу.

Но со временем стали ясны и ее недостатки: лампы были громоздкими, срок их службы — сравнительно коротким, а для подогрева катодов требовался дополнительный расход энергии, кроме того, стеклянные баллоны были хрупкими.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже