В то время в радиолокационных установках излучение генерировалось электронами, которые осциллировали (колебались) внутри металлических резонаторов и создавали стоячие волны между параллельными стенками резонатора. Поэтому длины волн излучения были кратны размерам резонатора и самая короткая достижимая длина волны была около 1 мм (частота —300000 МГц).
Еще занимаясь радарами, Таунс понял, что для них нельзя использовать все длины волн: молекулы воды в воздухе, например, интенсивно поглощают миллиметровые волны. Но отсюда следовало, что поглощение микроволн может служить основой для новой техники — микроволновой спектроскопии, позволяющей определять строение молекул.
А затем Таунсу пришла в голову идея: микроволны такого диапазона соответствуют разности энергий между некоторыми молекулярными уровнями. Значит, можно попробовать кардинально перестроить всю радарную технику — вместо того, чтобы возбуждать электроны в резонаторе, заставить молекулы прямо излучать нужные кванты.
Но ведь каждая молекула излучает, вообще говоря, сама по себе, а нужно получить мощный импульс. Как же заставить их излучать одновременно?
Давайте вспомним, как происходит процесс излучения. Электрон в атоме или молекуле может поглотить фотон, энергия которого равна разности между двумя уровнями, и подняться, в результате, на более высокий энергетический уровень — атом или молекула возбуждаются, т. е. приобретают избыточную энергию (правильнее, конечно, сказать, что в них на верхний уровень поднимается электрон). Через какое-то время после возбуждения (время высвечивания) они переходят на более низкий энергетический уровень спонтанным, случайным образом, выделяя энергию, равную разности между двумя уровнями, в виде фотона. В 1917 г. Альберт Эйнштейн, как мы уже говорили, доказал необходимость существования еще и индуцированного излучения, при котором возбужденные атомы или молекулы, под действием резонансных фотонов, немедленно возвращаются в основное состояние, испуская фотоны, неотличимые от тех, которые стимулировали этот возврат.
Но для того, чтобы получить мощный излучатель, надо собрать вместе много возбужденных молекул. Как сделать, чтобы они не начали излучать преждевременно? Таунс решает эту задачу и в декабре 1953 г. строит такую установку уже в Колумбийском университете. Этот прибор он называет «мазер» (аббревиатура английского выражения
В первом мазере молекулы аммиака проходили через электрические поля специальной конфигурации, которые отталкивали молекулы находящиеся в основном состоянии и фокусировали возбужденные молекулы в резонансной полости. Когда в полости накапливалась достаточная концентрация возбужденных молекул, то небольшая порция излучения резонансной частоты (фотоны с энергией, равной разности между основным и возбужденным состояниями молекулы аммиака) вызывала лавинообразный рост индуцированного излучения, возбуждение еще большего числа молекул, находившихся в основном состоянии, и еще большее возрастание этого излучения. В результате получается мощный усилитель излучения на резонансной частоте (в случае аммиака — в микроволновом диапазоне).
Как при этом оказалось, частота мазеров настолько стабильна, что они могут служить высокоточными часами. С помощью двух мазеров Таунс и его коллеги проверили и подтвердили специальную теорию относительности Эйнштейна, причем эту проверку позже назвали наиболее точным физическим экспериментом в истории. А в радиоастрономии мазеры, усиливающие чрезвычайно слабые, ранее неизмеримые сигналы, позволили распознавать радиоисточники на огромных расстояниях от Земли.
Прохоров и Басов шли к построению молекулярного генератора (предложенное ими название, позже вытесненное словом мазер) несколько иным путем. Прохоров, до войны аспирант в Лаборатории колебаний Физического института АН СССР им. П. Н. Лебедева (ФИАН) в Москве, возвращается после двух ранений на фронте к работе с ламповыми генераторами. Но в 1947 г. его интересы перемещаются в микроволновую область, к так называемому синхротронному излучению вращающихся электронов, а затем к радиоспектроскопии. Он организует группу молодых исследователей, которые, используя радар и радиотехнику, разработанные главным образом в США и Англии во время и после Второй мировой войны, исследуют вращательные и колебательные спектры молекул.
Помимо чисто спектроскопических исследований, Прохоров проводит теоретический анализ применения микроволновых спектров поглощения для усовершенствования эталонов частоты и времени. Полученные выводы привели Прохорова и его молодого сотрудника Басова к идее использования индуцированного излучения.