Отметим здесь только одну особенность бозевской статистики: в соответствии с ней любое число частиц может иметь одинаковую энергию (можно сказать, что бозоны — «коллективисты», а фермионы — «индивидуалисты», так как в каждом состоянии они могут находиться лишь поодиночке). В частности, любое число бозонов может иметь энергию, точно равную нулю. Такое состояние называется бозевским конденсатом, и в отличие, скажем, от конденсации водяного пара, когда молекулы собираются вместе (координаты почти совпадают), конденсация по Бозе — Эйнштейну означает, что у них одинаковые, равные нулю импульсы, т. е. они полностью неподвижны. Образование бозе-конденсата является фазовым переходом (второго рода), при котором резко меняется энтропия системы.
К свойствам ансамблей частиц мы еще вернемся — ими объясняются сверхтекучесть, сверхпроводимость и т. д., а пока нужно рассмотреть ход развития квантовой теории.
Следующий этап развития квантовой теории связан с именем принца Луи де Бройля. Он с ранних лет помогал брату, участнику первого Сольвеевского конгресса, редактору его трудов, и, следуя интересам брата, увлекся изучением свойств электрона, а также квантовой гипотезой. Во время Мировой войны Луи де Бройль служил радистом в действующей армии и там, на фронте, по его воспоминаниям, задумался над тем, почему фотоны представимы — в разных процессах — то как волны, то как частицы: нельзя ли предположить существование такого же корпускулярно-волнового дуализма (двойственности) и у других объектов?
Напомним сначала истоки этого дуализма. X. Гюйгенс принимал, что свет распространяется в виде волн, Ньютон предложил корпускулярную теорию света. При исследовании многих явлений выводы обеих теорий совпадают, и связано это с такой особенностью математических уравнений: картину распространяющихся волн можно заменить на картинку, где каждой волне соответствует перпендикуляр к ее поверхности (нормаль), а изменение и распространение этих векторов-нормалей как раз и описывает лучевую картину. Таким образом, для многих явлений математические описания в обеих теориях совершенно одинаковы.
На примере семьи де Бройль любопытно проследить, как менялись приоритеты в течение последних веков. Франсуа-Нари, 1-й герцог де Бройль (1671–1745) — маршал Франции при Людовиках XIV и XV, командующий армией в Войне за Австрийское наследство. Виктор, 2-й герцог (1718–1814) — маршал Франции, эмигрант во время революции. 3-й герцог, тоже Виктор (1785–1870) — уже не военный, дипломат Наполеона, затем пэр Франции, премьер-министр в 1835–1836 гг., а после переворота Наполеона III мемуарист и писатель, член Французской академии. Альберт (1821–1901), 4-й герцог — премьер-министр Третьей республики, затем историк, член Французской академии. Морис, 6-й герцог (1875–1960) — сначала морской офицер, затем физик, он оборудовал домашнюю лабораторию, в которой измерил (1908) заряд электрона, открыл метод фокусировки рентгеновских лучей, создал на этой основе спектрограф, вел работы по рентгеновской спектроскопии. Луи (1892–1987, Нобелевская премия 1929 г.), брат Мориса де Бройля, при его жизни принц де Бройль, с 1960 г. носил титул 7-го герцога де Бройль.
Проблема синтеза (сочетания) двух теорий, волновой и корпускулярной, вновь всплыла после работы Планка и, особенно, после возникновения квантовой теории Эйнштейна. Как же подойти к этому?