Читаем Наблюдения и озарения или Как физики выявляют законы природы полностью

Первыми специализированными научными приборами были микроскопы и телескопы. На примере их развития хорошо прослеживается ход научного и технического прогресса. Поэтому интересно рассмотреть, как эволюционировали эти приборы (мы остановимся только на истории микроскопов) и как менялось отношение к ним.

1. Оптический микроскоп

Микроскоп (от греческих «микрос» и «скопео» — малый и смотрю) — это, в принципе, любой прибор для создания увеличенных изображений малых объектов: наш глаз различает размеры только до 0,1 мм. Самым простым микроскопом является лупа — одиночная линза с сильным увеличением, которая использовалась уже в середине XV в. К 1673 г. голландский натуралист-любитель Антони ван Левенгук (1632–1723) научился создавать линзы почти с 300-кратным увеличением, что дало ему возможность наблюдать бактерии размером в 2–3 микрометра, открыть существование сперматозоидов и т. д. Микроскоп Левенгука — это просто круглый стеклянный шарик, через который надо было смотреть держа его вблизи глаза и располагая объект на миллиметровых расстояниях от линзы. Левенгук производил эти «микроскопы» десятками и с каждым скреплял какой-нибудь объект, но в своих наивных письмах Лондонскому королевскому обществу, переполненных рассуждениями о погоде, о своем здоровье и т. п., он описывает множество сделанных им открытий.

Еще в XVI в. конструируется составной микроскоп с дополнительной линзой: увеличенное изображение, даваемое объективом, рассматривается, для добавочного увеличения, через окуляр. Такой микроскоп собирали Галилей, еще более совершенный микроскоп с микрометрическим винтом построил Р. Гук (он написал книгу «Микрография», где описал свои многочисленные, хотя и не систематизированные наблюдения). Однако только в 1830 г. английский микроскопист Дж. Дж. Листер (1786–1869) установил теоретические принципы комбинации линз, после чего оказалось возможным создавать сложные составные линзы, не привносящие геометрические и цветовые искажения в изображения.

Дальнейшие успехи оптической микроскопии связаны, в основном, с работами Эрнста Карла Аббе (1840–1905) на предприятиях Карла Цейсса. Аббе сочетал в себе способности теоретика, инженера-конструктора и технолога. Его уникальная всесторонность и увлеченность работой позволили достичь того, что конструкции оптических приборов Цейсса стали не только лучшими в мире, но и почти не менялись в течение долгих десятилетий[45].

Аббе разработал теорию построения изображений в микроскопе (1872), перестроил технологию получения оптических стекол и сконструировал первый современный микроскоп (1878), который продолжал все время улучшать — можно сказать, что все дальнейшие микроскопы ничем, кроме деталей дизайна, от него не отличаются (Аббе изобрел и построил еще целый ряд оптических приборов).

Помимо того, Аббе определил пределы разрешимости оптического микроскопа — они оказываются порядка 1500 крат и определяются длиной волны света — не менее 0,35 мкм для фиолетового конца спектра (0,35 · 1500 = 525 мкм ~ 0,5 мм). Дело в том, что для наблюдения предмета необходимо, чтобы он искажал волновое поле, а предмет, размеры которого меньше длины волны, колеблется вместе с волною и на ее форму не влияет.

Оптические микроскопы имеют, помимо невозможности увеличить разрешение, и другие недостатки: прозрачные объекты нужно окрашивать, невозможно заглянуть внутрь непрозрачных объектов. В направлении преодоления этих ограничений и стали думать физики.

Но сперва расскажем о замечательном открытии, связанном как раз с одним из этих недостатков.

Пауль Эрлих (1854–1915, Нобелевская премия по физиологии 1908), врач, долго колебался между медициной и живописью. Точнее, его очаровывали картины, видимые под микроскопом при различном окрашивании препаратов: в бесцветных или прозрачных препаратах разные органы и микроорганизмы по-разному воспринимали вводимые краски и становились легче различимыми. И тут ему как-то сразу, в готовом виде, пришла в голову идея: а что если придумать такие краски, которые будут окрашивать только и только определенные органеллы или определенные микроорганизмы, а к ним присоединить ядовитые соединения, т. е. придумать такие «магические пули», которые избирательно, селективно будут убивать то, что надо, и поэтому лечить?

Так возникло новое направление в медицине — химиотерапия. И первым делом Эрлих решил испытать этот метод на самой сложной и неподдающейся тогда радикальному лечению болезни, на сифилисе. Было известно, что бледная спирохета, возбудитель сифилиса, погибает под действием ртутных препаратов, но они губят заодно и другие органы. Так что следовало изобрести такую краску, которая окрашивала бы только и только спирохеты, и прицепить к ней атомы ртути. Эрлиху удалось этого добиться на 606-м — по счету в лабораторном журнале — из исследованных красок-препаратов!

2. Фазово-контрастный микроскоп

Этот совершенно новый тип микроскопа придумал и создал, используя волновые особенности света, Фриц Цернике (1888–1966, Нобелевская премия 1953 г.).

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука