Читаем Наблюдения и озарения или Как физики выявляют законы природы полностью

Еще большее увеличение дает безлинзовый автоэлектронный микроскоп, придуманный еще в 1936 г. Э. В. Мюллером (1911–1977). Он задумался над очень простым вопросом: для чего нужно облучать объект электронным пучком — ведь электроны имеются и в самом объекте, т. е. он решил объединить объект и излучатель.

Работа оказалась сложной и заняла много лет, хотя к концу работы идея стала очень простой, как во всех по-настоящему оригинальных изобретениях. Итак, в одном из вариантов, берется металлическая полусфера, к центру которой подведено металлическое острие, если теперь подать на эту систему высокое напряжение так, чтобы острие заряжалось отрицательно, то с острия начнут срываться электроны и устремляться к полусфере. Если эта полусфера идеальна, то вылетающие электроны имеют равную вероятность попасть в любую ее точку, но если на острие имеется, скажем, какая-нибудь молекула, то на экране появится ее тень — увеличение будет определяться отношением радиуса полусферы к радиусу кончика иглы. В таких устройствах Мюллер достиг увеличения в миллионы раз (после каждого снимка приходилось обрабатывать или даже менять полусферы, искаженные потоком электронов).

В 1951 г. Мюллер сконструировал на схожих принципах ионный проектор и смог, впервые, получить снимки биологических молекул, доменов ферромагнетиков, дефектов кристаллической структуры и т. д.

6. Использование туннельного эффекта

Нобелевскую премию 1986 г. с Эрнстом Руской разделили Герд Бинниг (р. 1947) и Гейнрих Рорер (р. 1933) за создание сканирующего туннельного (или туннелирующего) микроскопа.

Если со времен создания рентгеноструктурного анализа можно было с достоверностью установить положение атомов внутри кристаллической решетки, а более или менее точно и внутри некристаллических тел, то определить расположение частиц на поверхности во много раз сложнее. Исследования в этой области столь сложны, что Вольфганг Паули однажды воскликнул: «Поверхность, несомненно, была изобретением дьявола!»

В 1978 г. Рорер и Бинниг предложили исследовать поверхности с помощью квантово-механического эффекта туннелирования. Это явление, о котором мы говорили в главе о квантовой механике, является одним из проявлений принципа неопределенностей Гейзенберга и состоит в том, что частицы могут «туннелировать», проникать в такие узкие области, проход через которые запрещен классическими законами, в частности тогда, когда им для этого не хватает энергии, как, например, в явлении альфа-распада. Отметим, что этот эффект использовался и для получения множества данных о границах, разделяющих отдельные слои в «сэндвичах» из разных материалов.

Рорер и Бинниг избрали иной путь: они заставляли электроны туннелировать через вакуум. Основная идея их изобретения очень проста и состоит в том, чтобы сканировать поверхность твердого тела в вакууме с помощью кончика острой иглы: если между образцом и кончиком иглы приложено напряжение и расстояние между ними достаточно мало, то электроны туннелируют с острия иглы на образец. Сила туннельного тока зависит от расстояния между образцом и острием иглы и выражается вполне определенной формулой, зависящей от этого расстояния. Поэтому исследователи надеялись, водя иглой вдоль поверхности образца и измеряя ток, получить возможность «нанести на карту» расположение микроскопических (атомных размеров) холмов и долин на поверхности образца.

Как сказал позже Рорер: «Мы были совершенно уверены в успехе. С самого начала мы знали, что это будет важным продвижением вперед. Удивительно лишь то, что нам удалось так быстро достичь желаемого». Первое успешное испытание сканирующего микроскопа они провели уже весной 1981 г.: им удалось достичь разрешения «шероховатостей» на поверхности кристалла высотой всего лишь в один атом. (Понять важность и новизну чужого открытия, да еще принадлежащего незнакомым авторам, не всегда легко: рецензент журнала, куда Рорер и Бинниг послали первую статью, отверг ее как «недостаточно интересную».)

Самой большой трудностью в их работе была необходимость исключения всех источников колебаний и шумов: расстояние между острием и предметом должно контролироваться с точностью до доли диаметра атома. Поэтому даже шаги прохожих могут нарушить работу сканирующего микроскопа: его пришлось помещать на тяжелом каменном постаменте, изолированном от внешних шумов амортизаторами из сплющенных шин и т. п. Острие при этом перемещается пьезоэлектрическими устройствами, которые чутко реагируют на изменения управляющего напряжения.

Сканирующие микроскопы были затем усовершенствованы и миниатюризированы, сейчас это стандартный лабораторный прибор небольшого размера (десятки сантиметров). Он позволяет разрешать по вертикали детали размером в 0,1 ангстрема (1 ангстрем равен 10-10 м), т. е. в одну десятую диаметра атома водорода. Разрешающая способность сканирующего острия шириной всего в несколько атомов позволяет разрешать детали в горизонтальной плоскости размером не более 2 ангстремов, а в настоящее время удается изготовлять острия шириной всего лишь в 1 атом.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука