Я уже упоминал другие примеры принципиального неприятия бесконечности. Необъяснимую антипатию к универсальным системам записи чисел выражали Архимед, Аполлоний и другие. Существуют такие учения, как инструментализм и финитизм. Принцип заурядности начинает с того, чтобы уйти от ограниченности взглядов и добраться до бесконечности, но в итоге загоняет науку в бесконечно малый, непредставительный пузырь постижимости. Есть еще пессимизм, который (как будет показано в следующей главе) стремится объяснить неудачи существованием конечной границы совершенствования. Один из примеров пессимизма – парадоксальная парохиальность сравнения Земли со звездолетом – транспортным средством, которое гораздо лучше подошло бы в качестве метафоры бесконечности.
Всякий раз обращаясь к бесконечности, мы опираемся на бесконечную сферу применимости какой-либо идеи. Всегда, когда идея бесконечности имеет смысл, это связано с тем, что существует объяснение, каким образом некий конечный набор правил для манипулирования конечными символами ссылается на нечто бесконечное. (Повторю, что это также лежит в основе всех остальных наших знаний.)
В математике бесконечность изучается посредством бесконечных множеств (то есть множеств с бесконечным числом элементов). Определяющее свойство бесконечного множества заключается в том, что некоторая его часть содержит столько же элементов, сколько все оно целом. Возьмем, например, натуральные числа:
В верхней строке на рисунке каждое натуральное число встречается ровно один раз. В нижней строке содержится только часть этого множества: натуральные числа, начиная с 2. Чтобы показать, что в этих двух множествах одинаковое число элементов, на рисунке между ними установлено соответствие, которое математики называют «взаимно однозначным».
Чтобы проиллюстрировать некоторые интуитивные вещи, от которых приходится отказаться, рассуждая о бесконечности, математик Давид Гильберт придумал мысленный эксперимент. Он представил себе гостиницу с бесконечным числом номеров:
Число на двери последнего номера отеля – не бесконечность. Во-первых, последнего номера вообще нет. Мысль о том, что в любом пронумерованном множестве гостиничных номеров есть элемент с наибольшим числом на двери, – это первое интуитивное представление из повседневной жизни, которое придется отбросить. Во-вторых, в любой конечной гостинице, в которой номера пронумерованы от 1, будет один под номером, равным общему их числу, а также другие с близкими номерами: если бы номеров было десять, на двери одного из них стояло бы десять, а среди остальных был бы номер девять. Но в отеле «Бесконечность», в котором число номеров бесконечно, порядковые номера их
Теперь представьте, что отель заполнен. В каждом номере может жить один и только один человек. Когда «заполнена» конечная гостиница, это все равно что «свободных мест нет». Но в отеле «Бесконечность» место найдется всегда. Одно из условий пребывания в нем – постояльцам придется сменить номер, когда администратор их об этом попросит. По прибытии нового гостя по системе оповещения проходит сообщение: «Просим всех постояльцев немедленно переехать в номер, на двери которого число на единицу больше, чем на двери занимаемого вами сейчас номера». Таким образом, по схеме, представленной на первом в этой главе рисунке, тот, кто жил в номере 1, переезжает в номер 2, а тот, кто жил в номере 2, – в номер 3 и так далее. Что же происходит в последнем номере? Но ведь последнего нет, и такого вопроса просто не возникает. Вновь прибывший заселяется в номер 1. Бронировать место в отеле «Бесконечность» не нужно.
Очевидно, в нашей Вселенной не может быть такого места, как отель «Бесконечность», поскольку в нем нарушается несколько законов физики. Однако это