Переезжать таким образом немного неудобно, хотя все номера одинаковые, и их убирают перед заселением нового постояльца. Но людям нравится останавливаться в «Бесконечности». Дело в том, что отель недорогой, всего доллар за ночь, но при этом невероятно роскошный. Как это удается? Каждый день, собрав по доллару за комнату, администратор распределяет доход следующим образом. Деньги, полученные от жильцов из номеров 1–1000, идут на шампанское и клубнику для постояльцев, на оплату услуг горничных и остальные расходы, но
Слава отеля ширится, и однажды на местную станцию приезжает бесконечно длинный поезд с бесконечным числом пассажиров, которые хотели бы остановиться в отеле. На бесконечно много оповещений по системе громкой связи ушло бы слишком много времени (к тому же по гостиничным правилам каждого постояльца можно просить совершить то или иное действие лишь конечное число раз в день), но это не важно. Администратор просто сообщает: «Просим всех постояльцев немедленно переехать в номер с числом на двери в два раза больше, чем число на двери вашего нынешнего номера». Очевидно, что это не составит труда, и в итоге занятыми окажутся только четные номера, а в нечетные можно будет заселять вновь прибывших. Этого как раз хватит, чтобы принять бесконечно много новых постояльцев, потому что нечетных чисел ровно столько же, сколько натуральных, что иллюстрируется следующим рисунком:
Таким образом, первый вновь прибывший селится в номер 1, второй – в номер 3 и так далее.
Затем в один прекрасный день на ту же станцию прибывает
Однако переполнить отель «Бесконечность» математически
Вот один из вариантов его доказательства, основанное на так называемом
Обратим внимание на бесконечную последовательность цифр, выделенных полужирным шрифтом – 6996
…. А теперь рассмотрим десятичное число, построенное следующим образом: оно начинается с нуля, затем идет десятичная запятая, а затем произвольные цифры с тем лишь исключением, что каждая из них должна отличаться от соответствующей по номеру цифры в бесконечной последовательности 6996…. Например, можно выбрать такое число: 0,5885…. Карта с построенным таким образом номером не могла попасть ни в один номер в отеле, потому что первой цифрой она отличается от карты, отправленной в номер 1, второй – от карты, попавшей в номер 2, и так далее. Таким образом, она отличается от всех карт, присвоенных номерам в отеле, что противоречит исходному предположению о том, что распределены были все карты.