Читаем Начертательная геометрия: конспект лекций полностью

На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р. На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью P. Она определяется пересечением следа Pv с фронтальной проекцией ребра ks (рис. 98 а). Если фронтальная проекция а точки А дана, то легко найти её горизонтальную проекцию а.


На рисунке 98, б показаны натуральные размеры ABC сечения ABC, которые были определены совмещением его с горизонтальной плоскостью путем вращения около следа Ph. Отдельно на этом рисунке показаны элементы, которые необходимы для построения развертки. Натуральные размеры ребер пирамиды можно найти путём вращения их около оси, проходящей через вершину S перпендикулярно горизонтальной плоскости, как показано на рисунке 98 в. На рисунке 98 г показана развертка, а изображение каждого из треугольников, входящих в состав развертки, можно построить по трём его сторонам – ребрам.


На рисунке 99 показано пересечение поверхности пирамиды горизонтально-проецирующей плоскостью Q. Треугольник ABC является сечением поверхности пирамиды плоскостью Q, основание АС которого проецируется на горизонтальную плоскость без искажения, а высота BD – на фронтальную и профильную плоскости.

Чтобы построить натуральное изображение сечения, нужно провести через проекции а, с и d вспомогательные прямые, которые перпендикулярны Qh. После этого следует провести прямую АС параллельно Qh (ACаА), точка D будет лежать на АС. Затем необходимо отложить от точки D на прямой Dd высоту треугольника (DB = db). Это определит положение вершины В. Теперь треугольник ABC представляет собой натуральный вид сечения поверхности данной пирамиды плоскостью Q. Строить натуральный вид треугольника сечения весьма удобно слева от фронтальной проекции (треугольник ABC).

4. Косые сечения

Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленить рассматриваемое тело на элементарные геометрические тела, например призму, пирамиду, цилиндр, конус, шар и т. д. После чего следует строить натуральный вид искомого сечения, рассматривая последовательно пересечение плоскости с каждым из этих тел.

На рисунке 100 показана правильная четырёхгранная пирамида с призматическим сквозным отверстием, которая пересечена фронтально-проецирующей плоскостью. Пусть требуется построить натуральное изображение сечения. Она представляет собой две равнобедренные трапеции ABCD и EFGH.

На плане представлены размеры сторон параллельных оснований в натуральную величину, а расстояния между ними, которые являются высотами трапеций, – на главном виде. Для построения сечения этих данных достаточно. Построение выполняют в следующем порядке:

1) проводят ось симметрии сечения параллельно фронтальному следу секущей плоскости, переносят на нее высоты упомянутых трапеций. С этой целью проводят через соответствующие точки следа секущей плоскости прямые, которые перпендикулярны этому следу;

2) откладывают по обе стороны от оси симметрии половины натуральных размеров оснований трапеций:

AD = ad, BC = bc и т. д.;

3) соединяют построенные точки прямыми и заштриховывают полученные площади сечения.

Также натуральный вид сечения можно наблюдать справа от горизонтальной проекции пирамиды (A1B1C1D1 и E1F1H1).


Заметим, что точки D, С, Н и G лежат на одной прямой, так же как и точки F, Е, В и А на другой прямой. Эти прямые являются сечениями передней и задней граней, каждая из которых разрывается отверстием на две части (это важно при построении натурального вида сечения).


На рисунке 101 показана пирамида, пересеченная горизонтально-проецирующей плоскостью. Пусть требуется построить натуральный вид сечения. Здесь прямую AF можно считать основанием многоугольника сечения, тогда построим это основание и от него будем откладывать высоты остальных вершин сечения. Следует поместить отрезок AF параллельно af, проводя прямые аА и fF перпендикулярно af (AF = af). Затем через горизонтальные проекции (b, с, d и е) остальных вершин многоугольника проводят прямые, перпендикулярные af. Потом откладывают на них по другую сторону от AF высоты перечисленных точек, основываясь на размерах главного вида. При этом отрезок DE должен быть параллельным AF.

Представим, выполняя это построение, что мы как бы совместили сечение с горизонтальной плоскостью проекций, вращая его около горизонтального следа af секущей плоскости, после чего немного отодвинули его в направлении, перпендикулярном следу af.

Также натуральный вид построен справа от фронтальной проекции (A1B1C1D1E1F1).

При этом точки В, С, Е и F лежат на одной прямой.

Лекция № 10. Пересечение поверхностей тел вращения дважды проецирующей плоскостью

1. Общие сведения

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика