Читаем Начертательная геометрия: конспект лекций полностью

б) затем найти фронтальную проекцию b точки В на контурной образующей конуса;

в) после этого из точки b провести прямую, параллельную оси х, до встречи с осью симметрии фронтальной проекции конуса в точке 3.

Промежуточные точки гиперболы. Чтобы найти проекции промежуточных точек гиперболы, проводят вспомогательные горизонтальные плоскости Q между вершиной гиперболы и основанием конуса. При этом каждая такая плоскость Q определит по паре точек гиперболы. Это построение выполняется следующим образом:

1) сначала проводят фронтальный след Qv секущей горизонтальной плоскости, которая пересекает контур проекции тела в некоторой точке с;

2) затем находят горизонтальную проекцию с;

3) после чего радиусом оси проводят окружность. При этом точки, в которых след Ph пересекает эту окружность, представляют собой горизонтальные проекции 2 тех точек гиперболы, которые лежат в плоскости Q, поскольку они отделяют сохранившуюся часть окружности от отсеченной плоскостью Р;

4) в завершение находят фронтальные проекции 2 точек гиперболы на следе Qv.

Данное построение указано на рисунке стрелками. После того как проведено несколько вспомогательных плоскостей и построено достаточное количество точек гиперболы, следует соединить их при помощи лекала.

Лекция № 11. Пересечение поверхности тел вращения проецирующей плоскостью

1. Сечение поверхности цилиндра

Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью:

1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основанию цилиндра (рис. 104а);

2) эллипс, если секущая плоскость Р не перпендикулярна и не параллельна оси цилиндра (рис. 104б);

3) пара прямых, если секущая плоскость Q содержит ось цилиндра или параллельна ей (рис. 104в).


Особый интерес представляет случай, когда наклонная секущая плоскость пересекает основание цилиндра (плоскость Р1 на рис. 104б). Здесь часть эллипса может быть неверно принята за параболу или гиперболу. Нужно знать, что ни парабола, ни гипербола не могут быть получены как сечение поверхности кругового цилиндра плоскостью.

На рисунке 105 показано пересечение поверхности цилиндра фронтально-проецирующей плоскостью Р. Здесь для цилиндра рассмотрено решение всех трех основных задач, связанных с сечением тела плоскостью, т. е. отыскание проекций сечения, его натурального вида и построение развёртки.

Проекции сечения. На рисунке 105а рассмотрено наглядное изображение сечения, а отсюда видно, что большая ось эллипса представлена хордой 0–6, которая пересекает ось цилиндра в точке С. При этом малая ось направлена по горизонтали, перпендикулярной в плоскости V. Следовательно, малая ось проектируется без искажения на горизонтальной и профильной плоскости (рис. 105б), а центр эллипса находится на оси цилиндра (точка С). Следует отметить, что на рисунке 105б ось симметрии проходит через точки 0–6.


Получающийся в горизонтальном сечении эллипс проецируется на плоскость в виде окружности основания, а на профильную плоскость – в виде эллипса. При этом большая ось эллипса 3"-9" является проекцией малой оси 3–9 исходного эллипса, а малая ось 0"-6" представляет собой проекцию большой оси 0–6. На фронтальной плоскости проекция эллипса есть отрезок 0-6, который равен большой оси самого эллипса.

Следовательно, в самом начале построения можно получить две готовые проекции сечения: горизонтальную и фронтальную. После этого нужно построить только профильную проекцию. Следует заметить, что точки 3" и 9" отделяют видимую часть кривой от невидимой на профильной проекции. Если секущая плоскость Р наклонена к плоскости основания цилиндра под углом 45°, то профильная проекция эллипса является окружностью. На рисунке 105 угол наклона секущей плоскости меньше 45°, вследствие этого профильная проекция большой оси представляет собой малую ось профильной проекции эллипса. В том случае, если бы угол наклона секущей плоскости был больше 45°, проекция большой оси была бы большой осью профильной проекции эллипса.

Построение натурального вида сечения. Сначала нужно отметить цифрами ряд точек на проекциях эллипса (на рис. 105 отмечено 12 таких точек), после чего следует начинать построение натурального вида сечения. Выполнить это можно двумя способами:

1) построением совмещения плоскости Р с горизонтальной плоскостью путем вращения ее около горизонтального следа Ph. На рисунке 105 совмещение построено слева от Ph и соответствующие точки отмечены цифрами с чертой сверху;

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика