Читаем Начертательная геометрия: конспект лекций полностью

Прямая I и треугольник А1В1С1 лежат в одной и той же плоскости Р, поэтому точки М и N пересечения прямой I со сторонами треугольника А1В1С1 являются искомыми.

2. Конус

Пусть нужно найти точки М и N, в которых прямая I встречает поверхность конуса. Для этого рассмотрим рисунке 112, на котором показано нахождение следов прямой на поверхности конуса. Через вершину S и данную прямую I проводят плоскость Р, что показано на рисунке 112, б, причем плоскость Р будет пересекать конус по двум образующим: AS и BS. Упомянутые образующие встретят данную прямую в искомых точках М и N. Тогда найдём проекции точек пересечения (рис. 112, а):


1) плоскость Р определяется точкой S и прямой I, тогда найдем ее след Рh. При этом одна точка следа Ph определяется следом h1 прямой I. Вторая точка искомого следа Ph находится путем проведения в плоскости Р произвольной прямой до встречи с горизонтальной плоскостью. С этой целью соединим точку S с любой точкой С этой прямой и найдем след h2 прямой SC. Прямая, соединяющая точки h1 и h2, будет представлять собой след Ph;

2) затем нужно приступать к нахождению горизонтальных проекций а и b точек пересечения А и В следа Ph с окружностью основания конуса;

3) после этого проводят горизонтальные проекции as и bs, образующих AS и BS, причем их фронтальные проекции не нужны;

4) далее отмечают точки пересечения m и n горизонтальных проекций образующих as и bs с горизонтальной проекцией данной прямой, они будут горизонтальными проекциями искомых точек М и N;

5) в заключение остается найти фронтальные проекции и на фронтальной проекции Í данной прямой.

Лекция № 13. Пространственные линии

1. Цилиндрическая винтовая линия

Образование винтовой линии. Рассмотрим рисунок 113а на нем точка М двигается равномерно по некоторой окружности, которая представляет собой сечение круглого цилиндра плоскостью Р. Здесь эта плоскость перпендикулярна его оси.

Допустим, что и сама окружность движется равномерно вверх или вниз по поверхности цилиндра. При этом плоскость Р, которая содержит окружность, будет оставаться всё время параллельной самой себе. Пять различных положений плоскости, которая содержит движущуюся точку, показаны на рисунке 113 б.

Вследствие этих двух равномерных движений данная точка М пройдет некоторую пространственную кривую М1М2М3М4М5. На рисунке 113в показана эта линия, которая располагается на поверхности цилиндра и носит название цилиндрической винтовой линии. Она не может быть совмещена с плоскостью. На рисунке 113 г показано наглядное представление о винтовой линии, которое дает пружина.

Особое внимание следует уделить рассмотрению способности линии перемещаться по самой себе. Прямая линия и окружность обладают способностью перемещаться по самим себе, вследствие чего цилиндрическая винтовая линия также может перемещаться по самой себе. Например, завинчивая металлический винт в специально приготовленное для него отверстие, мы наблюдаем скольжение одной винтовой поверхности по другой.

Шаг винтовой линии. Точка, сделав полный оборот вокруг цилиндра, будет подниматься вверх или опускаться вниз на некоторое расстояние, которое будет одним и тем же для каждого полного оборота точки (рис. 114). Шагом винтовой линии называется подъем точки за один оборот. Витком называется часть винтовой линии, которая описывается точкой за один оборот.

Правая и левая винтовые линии. На рисунке 114 будем рассматривать цилиндр со стороны основания в то время, когда точка, перемещаясь по винтовой линии, будет удаляться от наблюдателя. Вероятны два случая: движение по часовой стрелке или против неё. Если движение проходит по часовой стрелке, то будет иметь место правая винтовая линия (рис. 114а), а если против часовой стрелки – левая (рис. 114б). На рисунке 114(а-б) в первом случае видимая часть линии будет подниматься слева направо, а во втором – справа налево.

Проекции винтовой линии. Одна проекция прямого кругового цилиндра, на котором расположена винтовая линия, является окружностью, а другая – прямоугольником (рис. 114). Нужно построить фронтальную проекцию правой винтовой линии.

Допустим, движение точки начинается на основании цилиндра в точке 1 (рис. 114). Будем делить шаг винтовой линии и окружность основания на одинаковое число равных частей. На рисунке 114 этих частей 12. За полный оборот точка будет подниматься на величину шага. Следовательно, за 1/12 часть оборота она поднимется на 1/12 часть шага (точка 2).

Перейти на страницу:

Все книги серии Экзамен в кармане

Антикризисное управление: конспект лекций
Антикризисное управление: конспект лекций

Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования.Доступность и краткость изложения позволяют быстро и легко получить основные знания по предмету, подготовиться и успешно сдать зачет и экзамен.Рассматриваются понятия экономических признаков на макро– и микроуровнях, принципы в тенденциях макро– и микроэкономики, признаки и порядок установления банкротства предприятий, стратегия и тактика антикризисного управления, ключевые факторы антикризисного управления, особое внимание уделено управлению персоналом кризисного предприятия.Для студентов экономических вузов и колледжей, а также тех, кто самостоятельно изучает данный предмет.

Елена Алексеевна Бабушкина , Елена Бабушкина , Людмила Верещагина , Людмила Сергеевна Верещагина , Олеся Бирюкова , Олеся Юрьевна Бирюкова

Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука