Задача 7.1.
Для окончательной сверхточной обработки отверстия (хонингование алмазными брусками) в ванадиевых сплавах используют специальный радиально-раздвижной инструмент — весьма сложный и дорогой. Для новых изделий потребовалась еще большая точность. Попробовали сделать новый инструмент — по принципу действия такой же, как и раньше, но с более тонкой регулировкой. Ничего не получилось: инструмент оказался слишком сложным, капризным, раздвижной механизм быстро выходил из строя. Что вы предложите в этой ситуации?Система исчерпала резервы развития — дальнейшее усложнение невозможно. Типичный случай, когда надо переходить на микроуровень. Бруски закрепили жестко, а регулировку стали вести, охлаждая предварительно нагретое изделие (а. с. 709344). Простой физический эффект (изменение размеров в зависимости от изменения температуры) сделал ненужным сложный раздвижной механизм.
О применении физических эффектов и явлений мы поговорим особо. Сейчас отметим лишь, что все главные линии развития систем (см. рис. 12) ведут к структурам, охотно «присоединяющим» физические эффекты и явления. Даже простой переход к бисистеме сразу открывает возможности такого «присоединения». Вот любопытный пример. Допустим, надо измерить, на какое расстояние воднолыжник прыгнул с трамплина. Если для этого используют один микрофон, определить место «шлепка» о воду можно только приблизительно. Перейдем к бисистеме со сдвинутыми характеристиками: пусть один микрофон будет установлен на надводной части трамплина, а другой — в подводной. Тогда длину прыжка можно определить по разности времен поступления звукового сигнала от «шлепка» (а. с. 256570).
Особенно охотно «присоединяют» физэффекты системы, перешедшие на микроуровень. (Собственно, уже сам переход на микроуровень представляет собой задействование физических свойств, «дремавших» в веществах и полях. Достаточно вспомнить многочисленные изобретения, использующие тепловое расширение металлов или фазовые превращения воды.)
Задача 7.2.
Для сохранения низких температур используют экранновакуумную изоляцию: между двумя стенками создают вакуум и подвешивают тонкие экраны (пленка, фольга), отражающие тепловое излучение. Экранов много, между ними должны быть промежутки. Чтобы смонтировать такую многослойную конструкцию и обеспечить ее устойчивость, приходится протягивать — от стенки до стенки — крепежные элементы. А по этим элементам просачивается тепло. Противоречие: экраны надо как-то фиксировать, чтобы конструкция в любом положении была устойчивой, и нельзя фиксировать, чтобы по фиксирующим элементам не проходило тепло…Задача непростая, но мы уже рассматривали нечто в этом роде — задачу 6.8 о маховике. Там надо было притягивать одну ленту к другой, чтобы повысить прочность конструкции. Здесь же нужно отталкивать один экран от другого. Ответы, естественно, совпадают — с точностью до знака: ленты следует зарядить разноименно, экраны — одноименно. Произошел переход на микроуровень: вместо шпилек, стрежней, нитей использованы электроны. Теоретически задача решена, но практически здесь возникают определенные трудности. Как подать заряды на многочисленные экраны? Как сохранить заряды? По а. с. 1106955 эти трудности устраняют, выполняя экраны из полимерных пленок-электретов одноименного ряда.