Читаем Нанобиотехнологии: становление, современное состояние и практическое значение полностью

Технология СТМ позволила не только изучать структуру атомов, но и измерять электрическое или магнитное поля молекул или атомов. Разработка СТМ способствовала прогрессу в исследованиях полупроводниковых и металлических материалов.

С помощью сканирующей туннельной микроскопии были исследованы углеродные нанотрубки — крошечные цилиндры диаметром 0,5–10 нм и длиной примерно 1 мкм, которые являются особой кристаллической формой углерода. Углеродные нанотрубки стали новым материалом.

На основе углеродных нанотрубок разработан новый вид искусственных мышц. Несмотря на то, что размер нанотрубок в 10 тыс. раз меньше толщины человеческого волоса, они способны поднимать вес в 100 ООО раз превосходящий их собственный, а это означает силу, примерно в 85 раз превышающую максимальные возможности натуральных мышц соответствующего размера. Искусственные мышцы созданы из углерода и парафина соответствующего размера. Главный недостаток сканирующей туннельной микроскопии — возможность исследования только проводящих образцов и невозможность работы в жидкостях, что часто исключает работу с биологическими объектами.

Атомно–силовая микроскопия

В 1986 г. Генрих Рорер разработал первый атомно–силовой микроскоп — продолжатель рода сканирующих зондовых микроскопов. Благодаря разработке метода атомно–силовой микроскопии (АСМ) ученые смогли перенести на субнанометровый уровень исследования биологических объектов.

В основе работы атомно–силового микроскопа лежит использование разных видов силового взаимодействия зонда с поверхностью изучаемого образца. При этом микроскоп позволяет изучать образцы не только в воздушной среде, но и в жидкой. Особое преимущество атомно–силовой микроскопии — ее способность получать трехмерное изображение на уровне отдельных атомов и молекул.

Метод атомно–силовой микроскопии нашел применение в биохимии и молекулярной биологии во всем диапазоне размеров исследуемых объектов — от целых бактерий и клеток различных живых организмов до отдельных белковых молекул. Задачи, решаемые методом атомно–силовой микроскопии в этом диапазоне размеров, чрезвычайно разнообразны: идентификация микроорганизмов по их морфологии, исследование влияния различных веществ на жизнедеятельность клеток, визуализация и контроль образования фермент–субстратных комплексов, контроль размеров, структуры и стабильности различных наноструктур, использующихся для доставки лекарственных средств, визуализация единичных биомолекул и многое другое. Гибкость методик атомно–силовой микроскопии позволяет ученым шире применять их в биохимии, молекулярной биологии и биотехнологии.

Конструирование наноструктур на основе белков

Биологический мир буквально наполнен биологическими нанообъектами, имеющими линейные размеры 1–100 нм по крайней мере в одном измерении. К ним относят молекулы белков, ДНК, РНК и полисахаридов, которые формируют внутриклеточный каркас (цитоскелет) и внеклеточный матрикс, мембранные каналы, систему внутриклеточной сигнализации, молекулярные

машины для синтеза, упаковки и утилизации белков и нуклеиновых кислот, производства энергии, внутриклеточного транспорта и движения клеток.

Внеклеточные структуры также могут иметь наноразмерные характеристики. Так, экзосомы и везикулы, переносящие материал между клетками, имеют диаметр 65–100 нм. Частицы липопротеинов плазмы крови, транспортирующие липиды в организме, составляют 8–50 нм.

Биологические наноструктуры, образуемые на основе белка, называют белковыми наноструктурами. Они очень разнообразны по размерам и трехмерной структуре. Разнообразие белковых наноструктур обусловлено: большим количеством аминокислотных остатков в молекуле полипептида (от нескольких десятков до нескольких сотен); способностью каждого из аминокислотных остатков приобретать около 10 пространственных конфигураций и вступать в разнообразные связи с другими молекулами белка.

Ученые установили, что в живом организме форма и размеры исходных белковых наноблоков более строго определяют форму и структуру надмолекулярных комплексов, чем в искусственных условиях. Это обстоятельство заинтересовало исследователей.

Используя отличия в поведении белковых молекул в искусственных условиях, ученые смогли получать разные белковые наноструктуры, даже такие, которые не образуются в живых организмах. Получаемые белковые наноструктуры выделяют из среды, очищают и кристаллизуют. Затем их изучают с использованием физических и химических методов. Результаты исследований белковых наноструктур используют при конструировании нанокомплексов в лабораторных и производственных условиях.

Рассмотрим первые достижения в этом направлении.

Перейти на страницу:

Похожие книги

Голос земли. Легендарный бестселлер десятилетия о сокровенных знаниях индейских племен, научных исследованиях и мистической связи человека с природой
Голос земли. Легендарный бестселлер десятилетия о сокровенных знаниях индейских племен, научных исследованиях и мистической связи человека с природой

Как ученый-исследователь в области биологии, автор этой книги понимает, сколь не защищен и хрупок наш мир, а как активный гражданин и представитель коренного народа потаватоми, не потерявший связи со своими корнями, она чувствует и познает мир способом, который гораздо старше любой науки. В этой книге тесно переплетаются оба подхода к изучению мира – аналитический и эмоциональный, научный и культурологический, – чтобы в итоге найти способы преодоления возрастающего разрыва между людьми и природой. Книга, сотканная из реальных историй и легенд, возвращает людей к диалогу со всем, что зеленеет и растет, со Вселенной, которая никогда не переставала общаться с нами, даже когда мы разучились слышать.В формате PDF A4 сохранен издательский макет.

Робин Уолл Киммерер

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия