Для успешного лечения раковых заболеваний важно как можно раньше выявить первые появившиеся раковые клетки в органе. Обнаружить единичные злокачественные клетки можно с помощью нанобиосенсоров. Известно, что в ответ на появление в организме чужеродных веществ (антигенов) иммунная система вырабатывает антитела. Они представляют собой специфические глобулярные белки. Каждый вид антител избирательно взаимодействует с определенным антигеном (белковым рецептором).
Ученые стали использовать антитела, специфичные к рецепторам (антигенам) мембраны раковых клеток. Этими антителами начали покрывать углеродные нанотрубки. В результате получились нанобиосенсоры, способные обнаруживать злокачественные клетки в организме и определять вид опухоли. Кроме диагностики заболеваний нанобиосенсоры могут применяться в направленной доставке лекарств в заданную область организма, органа или клетки.
Направленная доставка лекарств
В классической фармакологии существует термин «лекарственная форма», описывающий способ введения лекарства в организм, например в виде таблеток, раствора для внутривенных инъекций, капель, мазей. Развитие биомедицинской науки привело к созданию новых средств упаковки и направленной доставки лекарств — нанокапсул, наноконтейнеров, многофункиональных магнитных терапевтических наночастиц, векторов.
Отличие новых типов лекарственных форм от стандартных состоит в возможности реализации на их основе технологий направленной доставки лекарств к определенным тканям, клеткам и даже внутриклеточным органеллам.
Одним из средств направленной доставки лекарств является
Размеры нанокапсул обычно не превышают 100 нм. Нанокапсупы обладают высокой проникающей способностью и могут проходить даже в такие «закрытые» зоны организма, как головной мозг. Нанокапсупы применяют для контролируемого введения инкапсулированных лекарств, а также генетических конструкций, несущих гены ферментов, гормонов.
К наиболее удобным нанокапсулам относятся
Мембрану липосомы обычно формируют из тех же фосфолипидов, которые входят в состав биологических мембран. Это позволяет достичь полной биосовместимости липосом. Создают липосомы различными способами, например подвергая смесь фосфолипидов и воды воздействию ультразвуком, замораживанию и оттаиванию, пропусканию через фильтры с наноразмерными порами. С помощью этих методов можно получить многослойные липосомы, а также крупные и мелкие однослойные липосомы. В зависимости от метода изготовления размеры липосом могут составлять от нескольких микрон до десятков нанометров (наносомы).
Если при создании липосом используется водный раствор лекарства, то часть этого раствора оказывается замкнутой внутри липосомальной капсулы и в таком виде вводится в организм человека. Это важно, когда вводится токсическое вещество, например противораковый агент, или если лекарство необходимо защитить от разрушения до момента его доставки к цели.
Для направленной доставки содержимого липосом и других нанокапсул к их поверхности пришивают адресные молекулы, узнающие поверхность клетки–мишени. Универсальными молекулами, узнающими поверхность клетки–мишени, могут быть антитела. Необходимо лишь знать, против каких поверхностных антигенов клетки их нужно конструировать. Присутствие распознающих молекул на поверхности нанокапсупы позволяет ей сконцентрироваться в заданной области (опухоли, очаге воспаления, около зоны ишемии и т. д.) и доставить туда лекарство.
Липосомы доставляют лекарство в клетки разными способами, например путем слияния с их мембраной, или за счет эндоцитоза. В настоящее время липосомы как нанокапсулы для лекарств используются при лечении рака, а также в составе косметических кремов.
Благодаря широкому развитию фундаментальных биомедицинских исследований антигенные портреты клеток становятся все более подробными, что позволяет находить отличия одних клеток от других на основании характеристик их поверхности.
Дополнительно появляется возможность управлять высвобождением лекарства из средства его доставки. Так, при использовании в качестве нанокапсул специальных наночастиц с металлическим ядром и полимерной оболочкой, в которой содержатся лекарства, можно вызвать их высвобождение при ограниченном нагревании наночастиц. Это достигается наложением переменного магнитного поля или облучением светом лазера, который слабо поглощается биологическими тканями, но хорошо поглощается металлическими наночастицами.