Читаем Нанонауки полностью

Рис. 1. — Химическое строение молекулы металлического фталоцианина, впервые синтезированного в 1927 году швейцарскими химиками Э. де Дьебашем и Э. фон дер Вайдом. Металлическим это соединение называется потому, что один из атомов молекулы фталоцианина замещен атомом металла, в данном случае — формула C32H16CuN8 — меди. На рисунке этот центральный атом металла обозначен литерой М. Выяснить структуру молекулы удалось в 1936 году благодаря рентгеновским лучам и эффекту дифракции. Чтобы дать представление если не о размерах молекулы, то хотя бы о масштабах, укажем, что длина воображаемой диагонали между центральным атомом металла M и двумя расположенными по обе стороны от него атомами азота N равна 1,5 нм


Чтобы читатель лучше представил себе основные этапы истории микроскопа, мы расскажем о приключениях одной молекулы, сильно поспособствовавшей прогрессу микроскопии (и других исследовательских методик) на протяжении почти столетия: это фталоцианин меди (рис. 1). Размеры этой молекулы — средние, а само соединение получают в виде раствора, кристаллов или осадка на твердой поверхности, для удобства наблюдения. Впервые фталоцианин меди был получен в 1927 году, а в наши дни он встречается на каждом шагу: если пластиковая сумка, в которую упаковали ваши покупки в супермаркете, синеватая или голубоватая, то в пластике наверняка есть фталоцианин.

ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ

Приключения фталоцианина меди начались в 1933 году, когда английский химик Патрик Линстед решил определить его атомную структуру. Для этого он воспользовался дифракцией рентгеновских лучей. Метод этот не относится к собственно микроскопии, потому что изображение молекулы получается «окольным путем». Само название приема говорит об использовании дифракции — явления, так мешавшего микроскопии. Просвечивая кристалл образца рентгеновскими лучами, получают геометрический образ, узлы которого расположены соответственно расстояниям между атомами, что и позволяет представить схему строения кристалла.

В молекулярном кристалле громоздятся миллиарды одинаковых молекул. Они почти недвижны просто потому, что двигаться некуда: соседние молекулы мешают. Эта их недвижность и позволяет получать изображения. Если кристалл тонкий, то видимый свет через него пройдет. Однако длины волн видимого света (400–800 нм) слишком уж велики, чтобы нести какую-то информацию: получается что-то вроде стрельбы из пушек по воробьям или раскалывания орехов бульдозером. Нужны волны много короче. Рентгеновские лучи годятся как нельзя лучше: длины волн соизмеримы с межатомными расстояниями внутри кристалла, то есть измеряются считаными нанометрами, если не меньше. Чтобы не вдаваться в историю, приведем лишь один пример. Рентгеновское излучение помогло выяснить структуру хлорида натрия (иначе поваренной соли): кристалл, оказывается, состоит из квадратных корзинок, а длина стороны квадрата — 0,4 нм. Собственно, это — расстояние между соседними атомами, точнее, ионами хлора и натрия.

Патрик Линстед привлек к своим исследованиям одного молодого ученого по имени Джон Робертсон, который после долгих вычислений выяснил, как устроен кристалл, состоящий из молекул фталоцианина меди, и понял, как построена сама молекула: это квадраты со стороной 1,3 нм.

ФТАЛОЦИАНИН МЕДИ НА ФОТОГРАФИИ

Работа всех нынешних электронных микроскопов основана на одном принципе. Металлическая, очень тонкая игла подводится к металлической пластинке. Если между иглой и пластинкой приложено электрическое напряжение достаточной величины, с иглы будут стекать электроны. И тогда то, что происходит в этом пространстве, будет зависеть от расстояния между иглой и пластинкой.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука