Читаем Нанонауки полностью

Во всех только что описанных микроскопах источник излучения заметно удален от экрана, на котором и наблюдаются результирующие изображения. А что, если приблизить иглу к металлическому экрану? Игла и экран оказываются обкладками конденсатора, которые могут быть электрически заряжены и между которыми может возникнуть напряжение. К примеру, при напряжении порядка 1 В на обкладках конденсатора скапливается несколько электронов (если расстояние между иглой и поверхностью поддерживается в пределах нескольких нанометров). Поскольку напряжение поляризации (напряжение между обкладками конденсатора) мало, электроны не стекают с иглы — в отличие от электронного микроскопа.

Но этот малюсенький конденсатор страдает одним изъяном: он так мал, что обкладки электрически — точнее, «электронно» (посредством электронов) — взаимодействуют через промежуток между иглой и поверхностью. Это значит, что электрон «не знает», на какой он обкладке. «Неведение» это квантовой природы, и выражается оно в токе утечки ничтожной силы, а само явление называется туннельным эффектом. При напряжении поляризации в 1 В и расстоянии между иглой и поверхностью в 1 нм сила тока утечки имеет величину порядка 1 нА и уменьшается по мере удаления иглы от поверхности. Хотя ток силой в наноампер кажется ничтожно малым, сама эта величина означает, что за секунду между иглой и поверхностью перемещается порядка 1010 электронов. Однако нашлись люди, превратившие этот порок в добродетель, — ими были Генрих Рорер и Герд Бинниг, работавшие в исследовательской лаборатории IBM в Цюрихе.

В конце 1970-х годов Рорер заинтересовался дефектами сверхтонких изолирующих пленок, нанесенных на поверхность металла или полупроводника. Размеры этих дефектов часто не превышали 10 нм, но они сильно вредили магнитной памяти и миниатюрным транзисторам. Однако в то время исследование строения этих изъянов с помощью любого микроскопа — во всяком случае, без разрушения самих дефектов — было невозможно.

Бинниг и Рорер решили как-то воспользоваться током утечки, возникающим из-за туннельного эффекта, который вполне мог сообщать и о качествах дефектов, и о расстоянии от кончика иглы до поверхности — речь, словом, шла об определении рельефа исследуемого образца. В работе к ним присоединился инженер-исследователь Кристоф Гербер, тоже трудившийся на IBM. Втроем они собрали из подвернувшихся под руку деталей прибор с очень тонкой и длинной иглой, которую можно было, по желанию, поднимать и опускать над поверхностью, и устройством для замера ничтожно малых токов — порядка наноампера. Они рассчитывали, что, сканируя поверхность иглой, то есть перемещая иглу над поверхностью так, чтобы покрыть всю ее площадь, и замеряя при этом силу туннельного тока, удастся построить, строка за строкой, все изображение обследуемой площадки, подобно тому как это происходит в сканирующем электронном микроскопе.

Рорер, Бинниг и Гербер строили пробный образец своего прибора три года. В 1981 году они экспериментально проверяли закон зависимости силы туннельного тока от расстояния между иглой и поверхностью. Оказалось, что сила тока уменьшается в 10 раз, если между иглой и поверхностью остается только 0,1 нм. Надо думать, для того чтобы уверенно называть такие цифры, требуется небывалая точность позиционирования иглы: нужно не только подвести иглу к поверхности, но и сохранять заданное расстояние по ходу сканирующих метаний — по горизонтали и по вертикали — иглы над поверхностью. Помогли три стерженька из материала, почти не деформирующегося под напряжением.

Сканирование производится при поддержании постоянной силы туннельного тока: игла поднимается над бугорками и опускается над впадинами сканируемой поверхности. Но если экспериментаторы рассчитывали обнаружить на обследуемой «гладкой» площадке своего образца правильную череду ступенек, то линии развертки, полученные осенью 1982 года, показали вереницу бугорков. Профиль, зарегистрированный прибором, отобразил точную атомную топографию просканированного кристалла! Так родился туннельный микроскоп, создатели которого в 1986 году получили Нобелевскую премию по физике.

Из вышесказанного ясно, что туннельный микроскоп относится к микроскопам ближнего поля: кончик иглы удерживается близ обследуемой поверхности. Если нечаянно или еще почему-то игла коснется поверхности, сила тока мгновенно увеличится до величин порядка 100 мкА, что в сто тысяч раз больше туннельного тока. Прибор оснащен специальной амортизацией, оберегающей иглу от внешних механических колебаний.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература