После изобретения туннельного микроскопа удалось получить множество изображений различных металлических и полупроводниковых поверхностей и разрешить большое количество проблем кристаллографии. А через некоторое время по ходу совершенствования туннельного микроскопа был создан микроскоп «на атомной силе»: для получения изображения используются силы, возникающие при взаимодействии иглы и сканируемой поверхности. Это силы притяжения — ван-дер-ваальсовы силы — и силы отталкивания, проистекающие из принципа непроницаемости атомов. Таким образом, в полку микроскопов ближнего поля — пополнение.
Вернемся к нашей молекуле фталоцианина меди. Игла туннельного микроскопа сканирует поверхности и создает изображения. А что будет, если на поверхность «выложить» какие-нибудь атомы или молекулы? А вдруг они окажутся настолько непрозрачными для электронов, замешанных в туннельном эффекте, что возникнет какой-никакой, но образ — этакие протуберанцы или сполохи на поверхности?
Джим Гимжевски, решив проверить это предположение, выбрал в качестве образца фталоцианин меди. Он поместил кучку молекул этого вещества на серебряную поверхность, зная, что серебро очень хорошо проводит электричество. Затем он окунул в скопление молекул иглу туннельного микроскопа и, убедившись, что несколько из них прилипло к игле, попытался перенести молекулы в другое место. И ему это удалось: он приблизил иглу к выбранному участку и стряхнул с нее несколько молекул, которые затем беспорядочно рассредоточились по поверхности. Потом он очистил иглу, слегка повысив приложенное к ней напряжение, и приступил к эксперименту: передвигая иглу близ того места, где он разбросал молекулы фталоцианина меди, Гимжевски смог получить изображение — первое изображение одиночной молекулы, полученное на туннельном микроскопе (
Рис. 4. Изображение молекулы фталоцианина меди на поверхности кристалла серебра, полученное в 1987 году Дж. К. Гимжевски на туннельном микроскопе в исследовательской лаборатории IBM в Цюрихе. Четыре дольки соответствуют тем четырем долькам белых крестиков, что видны на изображении, полученном в 1957 году на автоэлектронном микроскопе (см. рис. 2). Размеры участка на фото: 5 нм x 5 нм
И оно удивительно напоминало картинку, полученную Эрвином Мюллером тридцатью годами ранее. Однако оба опыта как бы противоположны друг другу: у Мюллера молекула была на игле, у Гимжевски — на поверхности. Вот как начиналось новое приключение, открывавшее неслыханные возможности, совершенно недоступные как автоионному, так и электронному микроскопам. Подумать только: притронуться к молекуле кончиком иглы, которая, в сущности, продолжает палец исследователя…
Приложение II
Злоключения одной приставки
Предание повествует о древнегреческом поэте Мимнерме, жившем лет за 600 до начала нашей эры в Колофоне. Стихотворец подпал под чары игравшей на флейте шаловливой красавицы по имени Нанно. Примерно в те же времена моряки из торгового порта Фокея добрались до южного берега Галлии. Там, на месте нынешнего Марселя, в эпоху греческой колонизации жило племя лигуров, а правил ими царь по имени Нанн. У царя была дочь на выданье. И вот царь устроил пир, на котором дочка должна была выбрать себе жениха — из приглашенных гостей. Вышло так, что княжна, отвергнув местных красавцев, предпочла одного из греческих моряков. Гостей на том пиру потчевали сладкими медовыми пряниками. Прошли века, а в марсельском порту моряки с удовольствием поедали нанно — медовые пряники, похожие на древние лигурийские сладости. Правда, потом это словечко «нанно» как-то забылось. И ни те греческие философы, которые «изобрели» атомы (кстати, греки называли карликов «нанос»), ни другие ученые мужи, жившие много позже, не вспомнили про «нанно», когда появилась оптическая микроскопия и понадобилось слово для обозначения предметов, невидимых для невооруженного глаза. Выбрали приставку «микро», от греческого «микрос» —