Распыление графита осуществляется при пропускании через его электроды 1, расположенные на охлаждаемых шинах
В описанном способе гелий играет роль буферного газа. Атомы гелия наиболее эффективно «гасят» колебательные движения возбужденных углеродных фрагментов, препятствующих их объединению в стабильные структуры. Кроме того, атомы гелия поглощают энергию, выделяющуюся при объединении углеродных фрагментов. Опыты показывают, что оптимальное давление гелия составляет 100 торр. При более высоком давлении агрегация фрагментов углерода затрудняется.
Для получения углеродных нанотрубок в настоящее время разработана более совершенная технология – синтез в плазме дугового разряда между графитовыми электродами в атмосфере гелия. Типовая схема электродуговой установки для изготовления наноматериалов, содержащих как нанотрубки и фуллерены, так и другие углеродные образования (например, конусы), показана на рис. 25.
При данном способе дуговой разряд возникает и поддерживается в камере с охлаждаемыми водой стенками при давлении буферного газа (гелия или аргона) порядка 500 торр. Обычно межэлектродное расстояние, устанавливаемое автоматически, составляет 1–2 мм. Для получения максимального количества нанотрубок ток дуги должен составлять 65–75 А, напряжение – 20–22 В, а температура электронной плазмы – порядка 4000 К. В этих условиях графитовый анод интенсивно испаряется, поставляя отдельные атомы или пары атомов углерода внутрь камеры. Из этих паров на катоде или на охлажденных водой стенках формируются различные углеродные наноструктуры.