Подсвеченные изнутри селеновые рубиновые звезды имеют очень красивую, яркую окраску. Чтобы звезды были красивого красного цвета днем, их сделали из светло-красного стекла и положили на слой молочно-белого стекла.
Селеновые стекла способны окрашиваться в различные оттенки (от желтого до темно-красного цвета) за счет изменения соотношения между количествами красителей. Оказалось, что аналогичные по цвету рубиновые стекла можно получать и при применении меди. При этом технология должна быть более точной и длительной.
При изготовлении (варке) стекла с небольшим количеством меди и олова необходимо, чтобы медь не соединялась с другими компонентами стекла, а находилась в виде мельчайших кристалликов металлической меди, равномерно распределенных по всей стеклянной массе. Частички меди настолько малы, что их присутствие в стекле ничем не обнаруживается.
Если это требование выполняется, то на первом этапе получают бесцветную заготовку, которую затем медленно нагревают до температуры 600–700 °C. При этом стекло начинает светиться красным, как драгоценный рубин.
Оказывается, что хотя стекло еще твердое, в нем уже возможно некоторое перемещение, вследствие которого частицы меди собираются вместе и выстраиваются в особую сетчатую структуру, уже не пропускающую свет, кроме красного спектра. Так получают медные рубины красного цвета.
В зависимости от применяемых металлов (их способности пропускать или поглощать лучи разной длины волны) объясняется окраска всех без исключения стекол.
Данная разработка, несомненно, является выдающимся технологическим достижением отечественных ученых и практиков. Аналогичными принципами руководствовались современные ученые при производстве квантовых точек, окрашивающих вещество в разные цвета.
В настоящее время наиболее значимые достижения прикладной нанотехнологии (рассматривает задачи и способы практического применения нанотехнологий для нужд человечества) находятся в сферах изготовления различных наноматериалов, электроники и медицины.
Все современные достижения практической нанотехнологии подразделяются на три группы: инкрементные, эволюционные и радикальные. Рассмотрим их более подробно.Инкрементные нанотехнологии
Инкрементная нанотехнология подразумевает промышленное применение наноструктур, а также специфических эффектов и феноменов, характерных для области перехода между атомным и мезоуровнями, в целях значительного усовершенствования существующих классических материалов.
Наибольшее развитие инкрементные нанотехнологии получили в области создания нанокомпозиционных конструкционных материалов с различными свойствами, нанодисперсных (ультрадисперсных) порошковых материалов (в том числе фуллеренов, углеродных нанотрубок и др.), защитных самоочищающихся покрытий, препаратов автохимии и некоторых других.