В последнее время наночастицы достаточно часто входят в различные ремонтно-эксплуатационные составы автохимии в качестве добавок к топливу и смазочным материалам. Нанотехнологии также широко применяются для нанесения износостойких композиционных наночастиц на рабочие поверхности при изготовлении специального металлообрабатывающего и стоматологического инструмента, защитных антикоррозионных и бактерицидных покрытий и в ряде других случаев. Например, сотрудники физического факультета МГУ им. М. В. Ломоносова совместно с университетским филиалом «Угреша» и в сотрудничестве с рядом зарубежных фирм выполняют научноисследовательские и производственные работы по созданию и нанесению наночастиц различных металлов на любую, включая мелкодисперсную (типа песка), подложку. Применяемая для этих целей плазменная технология совмещает процессы образования наночастиц и их напыления на поверхность и в несколько раз сокращает продолжительность процесса нанесения, а также уменьшает стоимость конечного продукта по сравнению с традиционными методами. Кроме того, характерные размеры наночастиц имеют достаточно малый разброс (не более ±30 %) относительно среднего значения (в интервале от 20 до 50 нм), которое определяется технологическими параметрами работы установки.
В мире постоянно растет интерес к полимерным наночастицам и нанокомпозитам. Ежегодно проводятся международные выставки, симпозиумы, конгрессы и конференции, посвященные вопросам наноструктурных полимерных материалов. Так, если в 2001 году в Чикаго (США) и Монреале (Канада) состоялись две первые международные конференции по полимерным нанокомпозитам, а в 2002 году различным аспектам этой проблемы было посвящено более 10 форумов, то уже в 2003 году мировая научная общественность провела более 20 международных встреч по данной тематике.
В США, Японии, Франции, Канаде и Индии разрабатываются специальные программы по наночастицам и нанокомпозитам различного назначения на основе полимеров. Многие программы ориентированы на разработку полимерных материалов со специфическими свойствами для нужд медицины, военных целей, транспорта и т. д.
В нанотехнологических устройствах будущего, разумеется, могут быть использованы самые разнообразные явления – магнитное и электростатическое взаимодействие, перенос электронов, электромагнитной энергии (фотонов) или различных квазичастиц. В соответствии с подходом Э. Дрекслера рассматриваются молекулярные и даже биомолекулярные нанотехнологии, однако они, как правило, сводятся к чисто механическим сборочным конструкциям.
Несомненно, использование многих других явлений и качеств, присущих наночастицам, в том числе квантово-механических свойств, должно значительно расширить эти возможности. Например, в настоящее время научно-технической общественностью обсуждаются вопросы применения фуллеренов для создания фотоприемников и оптоэлектронных устройств, катализаторов роста алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также синтеза металлов и сплавов с новыми свойствами. Углеродные фуллерены уже применяются в качестве тонеров (красителей) для копировальных машин, позволяя существенно повысить качество получаемых копий, снизить расход красителя и общую себестоимость выполнения копировальных работ.
Планируется также использовать фуллерены в качестве основы для производства электрических аккумуляторных батарей. Такие элементы питания с принципом действия на основе реакции присоединения водорода во многих отношениях аналогичны широко распространенным никелевым батареям, но обладают, в отличие от них, способностью аккумулировать примерно в пять раз больше водорода. В то же время подобные батареи характеризуются более высокой энергоемкостью, небольшой массой, а также экологической и санитарной безопасностью по сравнению с аккумуляторами на основе лития, не говоря уже о кадмии. Эти аккумуляторы могут найти широкое применение в элементах питания переносных радиостанций, сотовых телефонов, персональных компьютеров (особенно ноутбуков), слуховых аппаратов и многих других портативных устройств.
Создание одежды из материалов на основе нановолокон – также одна из областей, где нанотехнология уже находит практическое применение. Такая одежда не пропускает ультрафиолетовые лучи, обладает антибактериальными и антигрибковыми свойствами, практически не промокает под дождем и почти не пачкается.
Несмотря на ряд саркастических заявлений известных отечественных ученых и политиков о нанопродукции аналогичного типа, хочу ответить, что мы используем такие носки для занятий лыжным спортом, и готов подтвердить справедливость заявляемых их производителями высоких гигиенических свойств.
В таблице 10 представлены наиболее известные зарубежные фирмы, работающие в области создания наноматериалов и нанотехнологий.