Читаем Нанотехнологии. Правда и вымысел полностью

Нанотрубки обладают другими уникальными возможностями и свойствами, которые рассматриваются в последующих главах. При этом углерод не единственный материал для нановолокон и нанотрубок. В настоящее время получены нанотрубки из нитрида бора, карбидов бора и кремния, оксида кремния и ряда других материалов.

В связи с постоянным и бурным развитием нанотехнологий будет наблюдаться процесс непрерывного открытия и создания других самых разнообразных форм и разновидностей объектов. Благодаря указанным выше геометрическим характеристикам их также можно будет можно отнести к наноматериалам.

Недавно сообщалось о создании новой разновидности наноструктур — своего рода нанотравы, которая представляет собой достаточно плотный слой нановолокон, перпендикулярно ориентированных к поверхности подложки.

Нанотрава состоит из так называемых вискеров (от англ. whisker — волос, шерсть; «усы», неорганические волокна) — нитевидных кристаллов диаметром от 1 до 10 мкм (отношение длины к диаметру — более 1000).

Наибольший интерес представляют манганитные вискеры состава Ba6Mn24O48. Сам по себе манганит — это минерал из класса окислов и гидроокислов с химическим составом MnO(OH), который в общем случае содержит 80,66 % MnO, иногда примеси Fe, Al, Ba, Pb, Cu и др.

Вискеры, по мнению ученых, — один из перспективных кристаллических материалов с уникальным комплексом свойств, из которых можно изготавливать плетеные материалы или вату, но пока исследования в этой области находятся только в начальной стадии развития.

В природе практически нет абсолютно однородных материалов. Многие из окружающих нас веществ представляют собой смесь различных сред (дисперсных систем). В зависимости от агрегатных состояний диспергированной системы (расположенной внутри) и дисперсной системы (являющейся основой или каркасом) вещества получили разное наименование (табл. 5).


Таблица 5. Типы дисперсных систем

Благодаря сочетанию свойств многие из дисперсных сред являются перспективными нанотехнологическими материалами. К таким материалам относится аэрогель — класс дисперсных сред, представляющих собой гель, в котором жидкая фаза (диспергированная система) полностью замещена газообразной. По внешнему виду аэрогель напоминает обыкновенный пенопласт, а по структуре представляет собой древовидную сеть (дендриды) из объединенных в кластеры наночастиц размером 2–5 нм и полостей размерами до 100 нм. Поры аэрогеля могут занимать до 90–99 % всего объема вещества, при этом его плотность составляет всего от 1 до 150 кг/м3.

В результате аэрогели при очень низкой плотности обладают относительно высокой твердостью, прозрачностью (выдерживают нагрузку, в 2000 раз превосходящую собственный вес), жаропрочностью и т. д.

Изобретателем аэрогеля принято считать американского химика Стивена Кистлера (Steven Kistler) из Тихоокеанского колледжа (College of the Pacific) в Стоктоне. Он получил новый материал, замещая жидкость в геле метанолом. При нагревании полученного геля до достижения критической температуры (240 °C) под давлением метанол практически полностью испарялся, а сама гелевая основа «высыхала», превращаясь в твердую фазу и практически не уменьшаясь в объеме. В 1931 году полученные результаты Стивен Кистлер впервые опубликовал в журнале Nature.

Наиболее исследованы аэрогели на основе аморфного диоксида кремния, глиноземов, а также оксидов хрома и олова. В начале 1990-х годов получены первые образцы аэрогеля на основе углерода.

Рассматривая дисперсную систему аэрогелей, мы упомянули термин «дендриды» (греч. дендрон — дерево, англ. dendritic — ветвящийся, древовидный). В настоящее время принято выделять и особый класс наночастиц — дендримеров — химические соединения (наноструктуры размером от 1 до 10 нм), образующиеся при соединении молекул, обладающих ветвящейся структурой (древообразные полимеры).

Дендримеры являются полимерной структурой и состоят из мономеров, структурированных в древовидную форму (рис. 22).


Рис. 22. Рост дендримерной молекулы из основы N-X-N (вверх) и внешний вид дендримера

Разветвленная структура, похожая на крону деревьев, имеет множество внутренних полостей, которые можно заполнять теми или иными веществами, создавая объекты с соответствующими свойствами. Например, собирать различные наноэлектронные и наноэлектромеханические системы с использованием сканирующей зондовой микроскопии. Если полости дендримеров заполнить лекарственным или косметическим средством, их можно использовать в качестве нанокапсул для доставки к пораженным клеткам человеческого организма, заполнив серебром, можно применять как бактерицидное средство и т. д.

Несколько слов следует сказать о квантовых точках (англ. quantum dots) — малых фрагментах проводника (полупроводника), ограниченных по всем трем пространственным измерениям, содержащих электроны проводимости и характеризующихся наличием квантовых эффектов.

Перейти на страницу:

Все книги серии Открытия, которые потрясли мир

Шерлок Холмс: наука и техника
Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури. Вы познакомитесь с древними мифами и причудливыми фольклорными преданиями, которые пришлось развенчивать развивающейся науке судебной медицины. Чтение этой книги будет таким же увлекательным, как и любой из рассказов о Шерлоке Холмсе.(задняя сторона обложки)Эта книга напоминает поездку в уютном кэбе по дороге, построенной Шерлоком Холмсом. Эта дорога проведет вас через дебри медицины, права, патологической анатомии, гематологии и опасностей, подстерегавших судебную медицину в реальной жизни в XIX и XX веках.От темного пятна крови на белой стене в рассказе «Подрядчик из Норвуда» до траектории и удара пули в рассказе «Рейгетские сквайры» – автор книги Э. Дж. Вагнер использует потрясающие приключения Великого Детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания этих замечательных историй.Вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури. Вы познакомитесь с древними мифами и причудливыми фольклорными преданиями, которые пришлось развенчивать развивающейся науке судебной медицины. Наиболее характерными из них являются теория о продолжении роста волос и ногтей после смерти, а также идеи френологии — псевдонаучного учения о том, что личностные качества человека обусловлены формой и размером его черепа. Кроме того, вы узнаете о том, какую роль в истории криминалистики сыграли менингит, Черная смерть и вампиры.Эта книга изобилует тайнами реальной жизни, подобными тем, которые приходилось расследовать Шерлоку Холмсу. Что случилось с доктором Джорджем Паркменом, богатым врачом и филантропом, которого в последний раз видели в Гарвардской медицинской школе в 1949 г.? При расследовании этого дела впервые была проведена почерковедческая экспертиза, аналог которой проводил и Шерлок Холмс в повести «Собака Баскервилей», исследуя письмо, составленное из газетных вырезок: «Но ведь это мой конек! Разница между тем и другим совершенно очевидна».Читая эту книгу, ловишь себя на том, что перелистываешь ее страницы с таким же напряжением, как и любой из рассказов о Шерлоке Холмсе.

Э. Дж. Вагнер

Документальная литература
Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

Научная литература / Прочая научная литература / Образование и наука / История