3. При синтезе нанопорошков методом золь-гель технологии в предварительно разогретую смесь первичного реагента с необходимыми добавками быстро добавляется второй реагент. В процессе химической реакции образуется пересыщенный раствор заданного соединения, стремительно проходящего нуклеацию (в данном случае — начальная стадия фазового перехода от жидкого агрегатного состояния вещества к твердому) и вступающего в стадию роста кристаллов. Создание условий, при которых продолжительность нуклеации значительно меньше стадии роста, позволяет получать кристаллы с достаточно стабильными нанометрическими размерами.
4. Разновидность данного метода заключается в том, что в начале готовится «холодная» смесь реагентов, в которой скорость образования целевого вещества незначительна. При нагревании приготовленного раствора до необходимых температур образуется заданный продукт с концентрацией, достаточной для нуклеации. После быстрой и интенсивной нуклеации концентрация падает, и дальше происходит только рост образовавшихся частиц. В период роста кристаллов поддерживается температура, при которой процесс образования целевого вещества медленнее процесса его кристаллизации.
Достоинство обеих разновидностей золь-метода — возможность управлять размером, формой и степенью кристалличности наночастиц, варьируя комбинацию температуры и соотношения концентраций исходных реагентов и стабилизатора. Осажденные наночастицы отделяют от реагента в центрифугах. Золь-метод обеспечивает возможность формирования достаточно монодисперсных наночастиц различных полупроводников и металлов. Как мы видим, именно золь-методами получают радиоактивные материалы, при этом особое место отводится качеству и производительности задействованных центрифуг.
5. Наиболее рационально получать нанодисперсные порошки тугоплавких металлов (W, Mo, Ni) и их соединений (карбидов, нитридов и др.)
Для получения фуллеренов оптимальным материалом является графит, поскольку он сам изначально имеет много общего со структурой фуллеренов. Однако в настоящее время ведутся интенсивные поиски и других способов синтеза, в которых исходным сырьем служат, например, смолистые остатки пиролиза углеродсодержащих материалов, нафталина и ряда других материалов.
В таблице 6 представлены наиболее распространенные способы получения наноматериалов.
Известны работы, в которых электрическую дугу между электродами пропускают в среде растворителя — толуола и бензола. При этом, как показывает последующий масс-спектрометрический анализ, растворитель заполняется кластерами углерода с числом атомов, меняющимся от 4 до 76.
Газофазный метод (при 4000 °C и выше), обычно используемый для получения фуллерена С6 °CНТ, годится только для «гостевых» молекул, которые термически стабильны и могут подвергаться сублимации или испарению.
Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита. На рис. 24 показана простейшая схема установки для получения фуллеренов, предложенная В. Кречмером.
Распыление графита осуществляется при пропускании через его электроды 1, расположенные на охлаждаемых шинах