Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой (по крайней мере в одном направлении) ограничен и сравним с длиной электронной волны. В данных направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Это значит, что соответствующие им электроны могут иметь только определенные фиксированные значения энергии, вызывая дополнительное квантование энергетических уровней. Данное явление получило название квантового ограничения.
Так, с одной стороны, есть трубки с хорошей электронной проводимостью (выше, чем проводимость у признанных электрических проводников, например меди и серебра), а с другой стороны, большинство трубок — это полупроводники с шириной запрещенной зоны от 0,1 до 2 эВ. Управляя их зонной структурой, можно создать различные электронные приборы. В частности, появляется реальная перспектива разработки запоминающих устройств с плотностью записи до 1014 бит/см2.
Одно из самых замечательных свойств — связь между геометрической структурой нанотрубки и ее электронными характеристиками, которую можно предсказать на основе квантово-химических расчетов. Налицо возможность создания новых электронных приборов с рекордно малыми размерами. Еще одно достоинство нанотрубок связано с холодной эмиссией электронов, которая возникает при приложении электрического поля вдоль оси трубки. Напряженность поля в окрестности верхней части в сотни раз превышает напряженность, существующую в объеме, что приводит к аномально высоким значениям тока эмиссии при сравнительно низком внешнем напряжении и позволяет использовать нанотрубные макроскопические системы в качестве холодных эмиссионных катодов.
Взаимодействие электронных волн в наноразмерных структурах может сопровождаться интерференцией. Ее отличительная особенность состоит в том, что наличие заряда у электрона дает возможность управления им с помощью локального электростатического или электромагнитного поля, влияя на распространение электронных волн.
Рассмотренные квантовые явления уже используются в разработанных к настоящему времени наноэлектронных элементах для информационных систем. Однако ими не исчерпываются все возможности приборного применения квантового поведения электрона. Активные поисковые исследования в этом направлении продолжаются.
По данным
Доктор Авурис отмечает, что по интенсивности процесс излучения на несколько порядков превышает аналогичные процессы в балк-полупроводниках. Это, по его мнению, объясняется более сильным взаимодействием электронов и дырок, вызванным «одномерным» характером структуры нанотрубок.
Открытие униполярной люминесценции позволит определять микродефекты наноматериалов, в том числе и нанотрубок. Для более наглядного подтверждения эффекта фотолюминесценции доктор Авурис и его коллеги создали полевой транзистор на основе нанотрубки. Вход и выход устройства состоят из слоев палладия толщиной 20 нм и слоя титана толщиной 0,5 нм. Транзистор находится на подложке из полиметилметакрилата (PMMA), что создает диэлектрическую среду для работы транзистора.
«Механизм свечения нанотрубок в инфракрасном диапазоне схож с аналогичными явлениями в светоизлучающих макроскопических светодиодах, — отмечает Авурис. — Однако в нашем случае фотоэмиссия более интенсивна вследствие специфической морфологии нанотрубок. Есть еще одно важное отличие от макросветодиодов: нанотрубке не нужен допинг для формирования фотосистемы. Также нанотрубки излучают свет по всей своей длине, что довольно необычно».
Особый интерес представляют уникальные свойства квантовых точек, в частности оптические и фотолюминесцирующие эффекты, при которых поглощение фотона рождает электрон-дырочные пары, а взаимодействие электронов и вакансий приводит к флуоресценции (табл. 8). Квантовые точки обладают достаточно узким и симметричным пиком флуоресценции. В зависимости от размера и состава (типа) квантовых точек флуоресценция может наблюдаться не только в видимой части спектра, но и в ультрафиолетовой или инфракрасной области.
Так, квантовые точки ZnS, CdS и ZnSe флуоресцируют в ультрафиолетовой области, CdSe и CdTe — в видимой, а PbS, PbSe и PbTe — в ближней инфракрасной области (порядка 7003000 нм). Более того, квантовые точки на основе халькогенидов кадмия в зависимости от размера флуоресцируют разными цветами.