Из-за насыщенного цветового эффекта, который возникает при применении кварцевых частиц, рекомендуется использовать
Одна из основных проблем, которую еще предстоит решить, заключается в том, чтобы уже после осаждения частицы, обладающие новым распределением по размеру и новой структурой, оказались стабильными по отношению к старению и факторам воздействия окружающей среды. Например, ультрафиолетовое излучение может инициировать окисление покрытия, что приведет к гидрофилизации поверхности за счет образования кислородсодержащих групп.
Ученым удалось показать, что нанесение дисперсий гидрофильных частиц оксида кремния размером несколько нанометров на твердые керамические поверхности приведет к самоорганизации наночастиц за счет электростатического отталкивания и минимизации свободной энергии поверхности. Полученные в результате модифицирования поверхности обладают пониженным для гидрофильных жидкостей краевым углом смачивания, что улучшает стекание и увеличивает скорость высыхания после очистки.
В настоящее время разработаны специальные пропитки и аэрозоли, позволяющие обрабатывать самые различные материалы: дерево, бумагу, ткань, кожу и даже каменную кладку. Производится специальный материал, получивший наименование «камень-лотос», который не утрачивает гидрофобный эффект даже после обработки шлифовальной бумагой.
Уже создано несколько материалов, позволяющих производить покрытия, которые обладают свойствами «маслобоязни». Они не увлажняются ни водой, ни маслом и могут квалифицироваться как ультрафобные материалы и покрытия.
Вице-премьер правительства России С. Иванов заявил, что пять российских компаний, получивших поддержку в рамках важнейших инновационных проектов, уже производят нанопродукцию в объеме более 8 млрд рублей в год. «Это не “нанопурга”, как иногда говорят критики», — отметил С. Иванов. Например, на «Северстали» уже приступили к серийному производству уникальных сплавов с двукратным улучшением эксплуатационных свойств. Эти материалы предназначены для сооружения конструкций, эксплуатируемых в экстремальных условиях, в частности при разработке нефтегазовых месторождений отечественного арктического шельфа. В настоящее время объем продаж составляет около 2 млрд рублей в год, но он может быть увеличен более чем в 100 раз.
Наноинженерия поверхности и изделий
Мы столько можем, сколько знаем. Знание — сила.
Одним из направлений современных практических исследований, где нанотехнологии позволили добиться значительных результатов, является наноинженерия поверхности — научнопрактическая деятельность человека по конструированию, изготовлению и применению наноразмерных объектов и структур с заданными (прочностными, триботехническими, самоочищающимися и т. д.) свойствами либо аналогичных объектов или структур, созданных методами нанотехнологий.
Фактически область, которую в настоящее время принято называть нанотехнологией в нашей стране, является наноинженерией и, частично, наноиндустрией на начальной стадии развития.
Рассматривая нанотехнологию (наноинженерию объектов) по Дрекслеру, следует иметь в виду, что именно это и называется технологией «снизу вверх», при которой более сложные объемы строятся из отдельных атомов, молекул и наноструктур. В отличие от такого подхода, технология «сверху вниз» предполагает получение малых изделий из больших объемов конструкционного материала.
По второму пути человечество следует со времен своего возникновения. Первобытной человек из большого камня путем неимоверных усилий изготовлял себе наконечник для стрелы, затем топор или мотыгу. Одного неверного движения было достаточно, чтобы многодневный труд пришел в негодность. Современное производство, особенно машиностроение, не говоря уже о ремонтном производстве, недалеко ушло с нижнего уровня в направление «верхних» технологий по Дрекслеру. При изготовлении ряда деталей в процессе механической обработки до четверти объема материала заготовок переводится в стружку.
Среди методов наноинженерии изделий главное место принадлежит созданию различных наноструктур и нанообъектов методами силовой зондовой микроскопии (СЗМ), основные методы которой представлены в табл. 11.