Функция doTarget()
вызывается до вызова doConstraint()
и даёт нам возможность манипулировать целевой матрицей прежде, чем она будет передана в doConstraint()
. Аргументы - целевой объект, под-цель (или Кость или группа вершин для целевой арматуры или меша соответственно), целевая матрица, и свойства ограничения. В следующем разделе мы используем эту возможность для сохранения ссылки на целевой объект в свойствах, чтобы doConstraint()
могла иметь доступ к этой информации. Если мы не хотим ничего изменять, то достаточно возвратить целевую матрицу, как показано в следующем коде:
def doTarget(target_object, subtarget_bone, target_matrix,
id_properties_of_constraint):
return target_matrix
Точно также, если нет необходимости предлагать пользователю возможность определять дополнительные свойства, getSettings()
, может иметь просто оператор return
(возврат). Если мы хотим показать всплывающее меню, getSettings()
- то место, где это нужно сделать. Мы также увидим такой пример в следующем разделе. Следующий код будет корректной реализацией "ничегонеделания":
def getSettings(idprop):
return
Когда Луна и Земля вращаются вокруг друг друга, каждая из них чувствует гравитационное притяжение другой. На земле это приводит к приливам и отливам, но твердые тела Земли и Луны также исказятся, хотя этот эффект небольшой. Теперь известно намного больше о приливах и отливах, чем только притяжение (http://ru.wikipedia.org/wiki/Прилив_и_отлив), но мы можем показать гравитационные искажения в гипертрофированном виде с применением ограничений.
Один из способов сделать это - использовать ограничение TrackTo
, чтобы ориентировать ось нашего ограничиваемого объекта к притягивающему объекту и добавить второе ограничение, которое масштабирует ограничиваемый объект вдоль этой оси. Величина масштаба будет обратно зависима от расстояния между ограничиваемым объектом и целевым объектом. Эффект проиллюстрирован на следующем скриншоте, где эффект ограничения TrackTo
объединен со скриптовым ограничением moon_constraint.py
.
Мы должны написать это зависимое от расстояния масштабирование самостоятельно. Если мы возьмём шаблон ограничения, предоставляемый Блендером, мы можем оставить функции doTarget()
и getSettings()
как есть, но мы должны написать подходящую doConstraint()
(полный код доступен как moon_constraint.py
):
def doConstraint(obmatrix, targetmatrices, idprop):
obloc = obmatrix.translationPart() # Положение
obrot = obmatrix.toEuler() # Вращение
obsca = obmatrix.scalePart() # Масштаб
tloc = targetmatrices[0].translationPart()
d = abs((obloc-tloc).length)
d = max(0.01,d)
f = 1.0+1.0/d
obsca[1]*=f
mtxloc = Mathutils.TranslationMatrix(obloc)
mtxrot = obrot.toMatrix().resize4x4()
mtxsca = Mathutils.Matrix([obsca[0],0,0,0],
[0,obsca[1],0,0],[0,0,obsca[2],0], [0,0,0,1])
outputmatrix = mtxsca * mtxrot * mtxloc
return outputmatrix
Мы пропустили все строки, имеющие отношение к свойствам, так как мы не используем никаких настраиваемых пользователем свойств для этого ограничения. Выделенные строки показывают, что мы должны делать для вычисления зависимого от расстояния масштабирования.
В первой строке получаем позицию нашей цели. Затем мы вычисляем расстояние между ограничиваемым объектом и целью и определяем предел его минимума (чуть-чуть больше нуля), чтобы предотвратить деление на нуль в следующей выделенной строке. Используемая здесь формула отнюдь не является аппроксимацией какого-либо гравитационного влияния, но ведет себя достаточно хорошо для наших целей; коэффициент масштабирования будет близок к d
очень большое, и гладко возрастает при уменьшении расстояния d
. Последняя выделенная строка показывает, что мы изменяем масштаб только по оси y, то есть по оси, которую мы ориентируем на целевой объект с помощью ограничения TrackTo
.