Третий этап – операция репликации. Собираются копия сети, прокладывается связь между ней и оригиналом. Сеть 4 294 967 296 может стартовать.
Всего имеется 42142 + 255 = 42397 циклов (без учета репликации) и 16 гармонических стадий роста сети 65536. Сведем все данные в таблицы:
Подсчет числа циклов роста сети любого ранга от двух клаттеров до совершенной
Для того, чтобы найти полное количество циклов, которое проходит сеть любого ранга в процессе своей эволюции, нужно сложить число этих циклов на трех этапах ее роста (считаем, что сеть любого ранга, став совершенной, создает единственную свою копию, на что уходит ровно два цикла[8]
и рост сети следующего ранга всегда начинается с двух клаттеров.)На втором и третьем этапе число циклов вычисляется с полной определенностью: корень квадратный из веса клаттера минус единица плюс два. Минус единица, т. к. алгоритм восьми шагов прекращает свою работу за шаг до сингулярности. И далее два цикла на переход. Получаем корень квадратный из веса клаттера плюс единица.
Наибольший вклад в количество циклов, пройденных сетью за время ее роста, дает первый этап. Причем для сетей, с рангом большим трех, число циклов на втором этапе гораздо меньше, чем на первом и им обычно можно пренебречь. Следовательно, наиболее важным представляется подсчет числа циклов на первом этапе.
И здесь нас подстерегает неоднозначность. Действительно, в приложении этой математики к процессу роста населения Земли время эволюции Сети человека на всех этапах ее роста должно исчисляться целым числом циклов. Поскольку на первом этапе копирование происходит звеньями проблема возникает с последним циклом звена, если вес клаттера не делится нацело на квадрат размера сети. Рассмотрим, например, рост сети четвертого ранга от трех клаттеров до четырех. Для сборки четвертого клаттера потребуется 65536/32
= 7281 и 7/9 цикла. Т. к. 7:3 = 2·3+1, четвертый клаттер будет собран после копирования первой позиции последнего, из стоящих в очередь на копирование, клаттера 7282-го цикла.Т. к. звено замыкается здесь не в в момент завершения цикла, а у него внутри, то непонятно как округлять частное от деления веса клаттера на число носителей, которое копируется за цикл: с избытком, с недостатком или вообще не округлять? Возможны четыре варианта финализации звена на первом этапе:
1) Отдаем остаток последнему полному
циклу или распределяем его по каким-то из предыдущих, при этом на некоторых из них будет скопировано число носителей больше планового (звено состоит из 7281 цикла в нашем примере).2) Добавляем еще один цикл и переносим в него остаток (7 – в нашем примере) плюс некоторое число позиций, которые не будем копировать в текущем цикле (2 – в нашем примере); при этом носителей на последнем цикле будет скопировано меньше планового (звено состоит из 7282 циклов в нашем примере).
3) Этот вариант среднее между первым и вторым: если остаток меньше или равен половине квадрата размера сети идем по первому варианту, в противном случае – по второму (7281 или 7282 цикла в звене в нашем примере).
4) Есть еще один сценарий финализации звена, а именно: с перехлестом (без округления), когда следующее звено начинается внутри последнего цикла предыдущего звена с копирования его нескопированных носителей. Последний цикл текущего звена будет завершен здесь в начале следующего звена. В нашем примере сразу после копировании первой позиции последнего клаттера 7282-го цикла собираем четвертый клаттер и подключаем его к остальным. Начинаем следующее звено с копирования трех (2+1) позиций третьего клаттера и только тогда завершаем 7282-й цикл. Новоиспеченный четвертый клаттер в 7282-м цикле не копируем, а сразу начинаем новый цикл. Заметим, что последний цикл звена в этом случае не является (в любом из вариантов) формально циклом по определению, поскольку число скопированных позиций здесь либо больше, либо меньше квадрата размера сети.
Третий и четвертый вариант рассматривать не будем, т. к. результаты вычислений здесь практически не отличаются от результатов по первому и второму. На рис. 1 представлены формулы для подсчета полного числа циклов роста сети по первому и второму варианту работы с остатком, а также приближенная формула. Отрицательная добавка к сумме в виде логарифма от корня при подсчете по второму варианту учитывает то, что при делении Кn
на степень двойки результат получается целым, без остатка, но лишняя единица (цикл) все равно добавляется.