Так тянется ли космос бесконечно? К вопросу можно подойти двояко: путем наблюдений и теоретически. Пока мы следовали первому подходу, рассматривая, как хитроумные измерения открывали все более далекие области космоса без видимых признаков конца. Однако и теоретики достигли значительного прогресса. Прежде всего, как может пространство
Рис. 2.6.
Трудно представить себе, что пространство может быть конечным. Если оно где-то заканчивается, то что находится дальше, за его краем?Однако в середине XIX века математики Карл Фридрих Гаусс, Янош Бойяи и Николай Лобачевский независимо друг от друга открыли, что существуют и другие логические возможности для однородного трехмерного пространства. Бойяи в восторге писал отцу: «Из ничего я создал странный новый мир». Новые пространства подчиняются новым правилам: так, они более не обязаны быть бесконечными, каковым представлялось пространство Евклиду, а углы треугольника не обязательно дают в сумме 180°. Представьте себе треугольники на двумерных поверхностях трехмерных фигур. Сумма трех их углов больше 180° на сфере (
Этот пример показывает, что правила евклидовой геометрии могут нарушаться на поверхности, если она не плоская. Однако идеи Гаусса и других математиков были еще радикальнее: пространство может быть искривленным само по себе, даже если оно не является поверхностью чего-либо! Предположим, вы – слепой муравей, желающий знать, по какой из фигур на рис. 2.7 вы ползаете. Вы чувствуете себя так, будто живете в двумерном пространстве, поскольку не можете выйти в третье измерение (оторваться от поверхности), но это не препятствует вашей детективной работе: вы по-прежнему можете определить прямую линию (как кратчайший путь между двумя точками), а значит, и суммировать величины трех углов треугольника. Например, если вы получите 270°, то воскликнете: «Это больше 180°, значит, я на сфере!» Чтобы еще больше впечатлить друзей-муравьев, вы даже можете рассчитать, как далеко нужно пройти по прямой, чтобы вернуться в исходную точку. Иными словами, все обычные для геометрии объекты – точки, прямые, углы, кривые и т. д. – можно строго определить, оставаясь в двумерном пространстве безо всяких ссылок на третье измерение. Это означает, что математики могут строго определить кривизну двумерной поверхности, даже если третьего измерения не существует: двумерное пространство может быть искривленным само по себе, не являясь поверхностью чего-либо.
Рис. 2.7.
Если нарисовать треугольники на этих поверхностях, сумма их углов окажется больше 180° (Вероятно, математическое открытие неевклидовых пространств полтора столетия назад казалось большинству людей не более чем абстракцией, не имеющей практического отношения к нашему физическому миру. Затем Эйнштейн выдвинул общую теорию относительности, которая, по сути, утверждала, что мы – муравьи. Теория Эйнштейна позволяет нашему трехмерному пространству быть искривленным без всякого скрытого четвертого измерения, в котором оно искривлялось бы. Так что на вопрос, в пространстве какого типа мы живем, нельзя ответить, исходя из одной логики, как надеялись сторонники Евклида. Решить эту задачу можно, лишь выполнив измерения, например построив в космосе огромный треугольник (скажем, из лучей света) и проверив, равна ли сумма его углов 180°. В гл. 4 я расскажу, как мы с коллегами развлекались, проделывая это. Ответ оказался близок к 180° для треугольников размером с Вселенную, но значительно превосходящим 180°, если большую часть треугольника занимает нейтронная звезда или черная дыра. Так что форма нашего физического пространства сложнее, чем в трех примерах на рис. 2.7.