Таким образом, не только корпус спутника, но и почти все установленные на нем приборы для научных наблюдений требуют для своей работы ориентировки в течение длительного времени относительно различных опорных тел, расположенных в мировом пространстве. Относится это и к солнечной батарее, которая для превращения солнечной энергии в электрическую должна быть ориентирована в направлении на Солнце во время движения космического летательного аппарата.
Как известно, источником энергии на ИСЗ и космических кораблях могут служить специальные малогабаритные аккумуляторы. Однако незначительная их емкость сильно ограничивает срок «активной жизни» спутника. Это подтвердил, в частности, опыт первых наших, а затем американских ИСЗ. Поэтому уже на третьем спутнике в качестве источника питания начали применяться солнечные батареи, собранные из кремниевых фотоэлементов. Применение солнечных батарей, как известно, обеспечило рекордно длительную работу радиостанции «Маяк», установленной на борту третьего советского спутника.
Способы угловой ориентации в условиях невесомости и безвоздушного пространства
Когда самолет или ракета летят в атмосфере, то их положение в пространстве можно, как известно, изменить с помощью руля, элеронов или интерцепторов, которые управляются от автопилотов с применением гироскопических узлов и различных маятниковых приборов.
В условиях же полета свободного тела такие приборы не будут действовать, так как аэродинамические рули в безвоздушном пространстве беспомощны, а приборы, действие которых основано на использовании маятникового эффекта (то есть силы тяжести), в условиях невесомости также бесполезны. Как же в таком случае быть?
Ученым удалось найти способ изменения положения осей свободного тела относительно Земли, Солнца, Луны звезд и других объектов.
Угловая ориентация свободного тела может быть осуществлена прежде всего о помощью маленьких реактивных двигателей, у которых газовые струи направлены в разные стороны по отношению к его осям. Подобный способ уже давно применяется, в частности, для стабилизации геофизической ракеты, летящей в стратосфере.
Второй способ космической ориентации свободного тела осуществляется с помощью вращающихся маховиков или, как говорят специалисты, с помощью так называемых инерционных масс, располагаемых на его осях. Его предложил еще К. Э. Циолковский. Способ основан на одном из классических законов механики, открытых около двухсот лет тому назад Ньютоном. Это широко известный в механике «закон сохранения главного момента количества движения».
Для ориентировки одной из трех осей спутника необходимо поместить в его корпусе на двух жестко связанных с ним осях по маховичку, которые будут вращаться двигателями относительно этих осей с определенными угловыми скоростями. Их вращение при этом должно быть направлено в сторону движения корпуса спутника, и в этом случае вращение ИСЗ вокруг этих двух его осей прекратится. Маховички, правда, будут продолжать вращаться внутри корпуса спутника с нарастающими угловыми скоростями; величина их будет тем больше, чем быстрее вначале вращался корпус спутника вокруг этих двух осей, то есть чем больше была его начальная угловая скорость. Маховички согласно указанному закону, так сказать, «забирают» в себя ту угловую скорость, которую имел корпус спутника, например, при отделении его от ракеты-носителя. Если же ИСЗ не имел начальной скорости вращения, а его главная ось была лишь отклонена на какой-то угол от направления на ориентир, то после того как маховички «отработают» этот угол, они уже дальше вращаться не будут.
Таким способом можно остановить в безвоздушном пространстве вращение корпуса спутника, если оно имеется, и повернуть ИСЗ на желаемый угол, то есть осуществить угловую его ориентацию относительно Земли, Солнца, магнитного поля Земли и т. п.
Очевидно, что реальная система стабилизации космических летательных аппаратов будет сочетать в себе два вышеуказанных способа. С одной стороны, может быть использована система реактивных сопел, способных устранять большие возмущающие моменты, то есть большие угловые скорости вращения космических летательных аппаратов вокруг его осей, а с другой стороны, вращающиеся инерционные массы, с помощью которых удастся осуществить весьма точную стабилизацию.
Автоматы ориентируют спутник