Сигнал, который заставляет маховички или реактивные микродвигатели (то есть стабилизирующие элементы) вращаться в определенную сторону с определенной скоростью, создается системой астроориентировки. Система астроориентировки космических летательных аппаратов состоит из сложного комплекса гироскопических и астрономических узлов. Подобные системы, называемые астронавигационными, применяются уже давно в ракетах, полет которых по определенному заданному курсу осуществляется при помощи различных ориентиров, например, небесных светил. За положением светил зорко наблюдают «глаза» ракеты — астрономические приборы. Стоит ракете под влиянием какой-либо причины сбиться с курса, как в тот же момент это отклонение с помощью электронных приборов автоматически вычисляется и к механизмам, которые управляют газовыми рулями, поступает сигнал, заставляющий космический летательный аппарат возвратиться на прежний курс. Таким образом, космический летательный аппарат с астронавигационной системой управления сам прокладывает и рассчитывает свой курс, ориентируясь по заранее выбранным звездам.
А как же спутник? Как и ракета, он должен сохранять строго определенное положение в полете, автоматически определять свое положение в пространстве и по отношению к географическим координатам Земли. Для этой цели будет служить сложная автоматическая фотоследящая система ориентации спутника за выбранными звездами-ориентирами. Оптическая ее часть предназначена автоматически следить за этими звездами, непрерывно определяя местоположение спутника относительно земных географических координат. С помощью этой системы будут вырабатываться также сигналы, управляющие вращением маховичков, а через них и поворотом корпуса спутника относительно жестко связанных с ним осей.
Питание же для электродвигателей, которые вращают маховички внутри корпуса спутника, поступает от солнечной или аккумуляторной батареи в зависимости от того, падает ли в данном случае на него солнечный свет или он экранирован Землей.
Регулируемой величиной в автоматической ориентации космического летательного аппарата, например, на Солнце, является отклонение оси от направления на Солнце. Очевидно, что в качестве чувствительного к этому отклонению элемента можно взять фотоэлектрический элемент, который вырабатывает управляющий сигнал, пропорциональный этому отклонению.
Для решения задачи ориентации космического летательного аппарата на Солнце, как было выше выяснено, надо осуществить вращение ИСЗ вокруг двух его осей.
Конструктивно эту задачу можно решить следующим образом. С помощью чувствительного блока фотоследящей системы определяется угол рассогласования ориентируемой оси с направлением на Солнце. При этом чувствительный блок вырабатывает управляющий сигнал, который усиливается и подается на стабилизирующие элементы (то есть маховички). Последние так изменяют момент количества движения системы, чтобы ориентируемая ось снова совпадала с направлением на Солнце. В качестве чувствительного блока системы ориентации в зависимости от выбранного типа ориентира может быть применен магниточувствительный датчик, или фотоэлектрический блок, или, наконец, гироскоп, который не нуждается в пространственном ориентире, ибо его ось всегда старается сохранить неизменным заданное относительномирового пространства положение. Однако ось любого гироскопа вследствиетрения со временем уходит от заданного направления. Кроме того, значительный вес, размеры и ограниченность запаса источников питания делают иногда нерентабельным его использование на ИСЗ. Правда, для временной ориентации гироскоп может быть применен и на спутнике, например, для удержания какой-либо оси спутника в направлении на Солнце или звезды при временной их потере в процессе работы фотоследящей системы (например, при временном экранировании спутника Землей).
Самым перспективным является применение на ИСЗ фотоэлектрического элемента, так как, имея малые габариты и вес, что весьма существенно для условий спутника, он может обеспечить высокую точность ориентации.
Как мы уже отмечали, на третьем ИСЗ был установлен магнитометр, измерительный датчик которого автоматически ориентировался по направлению полного вектора земного магнитного поля. Два потенциометрических датчика, помещенных на узле ориентации, позволяли определить положение корпуса спутника относительно земного поля и скорость вращения ИСЗ вокруг собственных осей.
Эти важные данные давали возможность оценить начальные угловые скорости ИСЗ и, учитывая их, построить любой полностью ориентируемый спутник, а также решить проблему его возращения на Землю.
Угловая ориентация искусственных спутников Земли имеет, таким образом, большое значение для создания будущих более совершенных, возвращаемых на Землю спутников и межпланетных кораблей.
Ориентация на Солнце и Луну