В 1915 году русский математик Михаил Осипов написал серию статей, широко известных как
где
Хотя арифметическая интуиция может подсказать нам, что у группы А должно остаться 250 стрелков после перестрелки с группой В, не нужно быть математическим умом, чтобы понять, что эта решающая разница в 250 стрелков в пользу группы А позволит ей сконцентрировать свой огонь на группе В, полностью вовлечённой в перестрелку с 750 стрелками из 1000 человек группы А, тем самым все больше снижая
Другими словами,
Мы хотим знать, когда обе силы достигнут нуля по своей силе, что может быть выражено как: —
—
Это то уравнение, которое нам нужно, потому что оно позволяет нам интегрировать его для времени битвы, времени начала и времени окончания. Те, кто более знаком с простым математическим анализом, могут теперь вспомнить, что взять простейший интеграл — это найти первообразную, а затем вычислить разницу её значений на верхнем и нижнем границах интегрирования. В наших случаях это времена начала и окончания. После интегрирования обеих частей уравнения 4 мы приходим к уравнению, которое выглядит следующим образом:
Рассмотрим эту простую задачу: мы знаем, что боевая эффективность пулеметчика равна боевой эффективности 36 стрелков. Сколько пулеметчиков нам понадобится, чтобы полностью заменить 1000 стрелков? Нет, это не 1000, разделенное на 36 или почти 28, это 1000, разделенное на квадратный корень из 36, который равен 6. 1000/6 даёт нам около 167 пулеметчиков. Это означает, что боевая мощь боевых сил рассчитывается путем умножения боевой эффективности отдельного подразделения (стрелка, отделения, взвода и т. д.) На квадрат численного состава. На языке непрофессионалов это означает одну очень важную вещь: чем больше у вас численного превосходства (не говоря уже о том, что у вас численный превосходство над численностью вашего противника), тем более непропорциональным будет распределение потерь в вашу пользу. Действительно, пересчитайте ту же задачу, но теперь 2000 против 750. Вы потеряете примерно 146 ваших стрелков, то есть 1854 ваших солдат переживут битву. Некоторые дополнительные сведения о квадратичной природе модели Ланчестера вы можете найти в концевых сносках к этой главе.8