Натуральное число называется M-гладким, если все его простые делители не превосходят M. Исходя из этого определения, можно говорить о 3-гладких, 5-гладких, 7-гладких и т. д. числах. Например, к 3-гладким числам относятся: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, ….Все они в разложении на простые множители имеют только два простых числа 2 и 3 в различных степенях. Число 5000 имеет следующее разложение на множители: 23·54. Поэтому 5000 – это 5-гладкое число, а также 6-гладкое число и так далее, но не 4-гладкое. В основном определении гладкого натурального числа, останавливаются на множителях 2, 3, 5 или 7, следовательно, это определение соответствует 7-гладкому числу. Последовательность таких чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, … . То есть, из натурального ряда чисел выбрасываются числа, кратные простым числам начиная от 11 и выше.
***
Полнократное число – натуральное число, которое делится нацело квадратом каждого своего простого делителя. Эквивалентное определение: число, представимое в виде a2·b3, где a и b натуральные числа. Наименование придумано математиком Соломоном Голомбом. Когда мы подходим ближе к нашему времени уже можно четко понять, кто ввел в оборот те или иные числовые определения, история сохраняет имена первооткрывателей. Последовательность полнократных чисел: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, … .
Из определения следует, что квадраты чисел и кубы чисел являются полнократными числами, так как вторым числом в определении может быть единица. Два наименьших последовательных полнократных числа – это 8 и 9. Согласно гипотезе Эрдёша, не существует трёх последовательных полнократных чисел. В связи с понятием полнократных чисел стали рассматривать разложение чисел не только в сумму и произведение других чисел, но ввели в рассмотрение разложение чисел в виде разности двух полнократных чисел. Именно введение разности в рассмотрение – главное значение этого класса чисел. Ведь до сих пор упоминалось сложение, умножение, деление, а о разности даже не заикались. Любое нечетное число представимо в виде разности двух последовательных квадратов: (k+1)2-k2=k2+2k+1-k2=2k+1 – нечетное число. Аналогично в виде разности квадратов представимо любое число кратное четырем: (k+2)2-k2=k2+4k+4-k2=4k+4. Встал вопрос о представлении в виде разности двух полнократных чисел любого числа, кратного двум, но не кратного четырем. Например, 2=33-52. Долго стоял вопрос с разложением числа 6, пока не доказали, что любое число допускает бесконечно много таких представлений. В частности, 6=252·73-4632=214 375-214 369. На русском языке литературы о полнократных числах нет, но спасает то, что в Википедии дается перевод статей на русский и можно почерпнуть информацию.
***
Натуральное число называется необычным, если в его разложении на простые множители самый большой простой множитель строго больше квадратного корня из числа n. Как тяжело писать, когда нельзя употреблять ни редактор формул, ни встроенные символы и приходится использовать только то, что есть на клавиатуре. Вместо одного значка пишешь четыре слова. В определении приходится выходить из множества натуральных чисел и опираться на числа иррациональные, но для полноты охвата прилагательных, применимых к натуральным числам, не хотелось выбрасывать это определение. Все простые числа необычны. Для любого простого p все его кратные меньше p2 необычны. Первые несколько необычных чисел: 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, … .
***
Сфеническое натуральное число (от др.-греч. сфена – клин) – число, равное произведению трёх различных простых чисел (так, например, 30=2·3·5; соответственно, число 30 является первым сфеническим). Количество делителей произвольного сфенического числа всегда равно 8. Например, если n=pqr, где p, q и r – разные простые числа, то делителями n будут: 1, p, q, r, pr, qr, pq, pqr Так первое сфеническое число 30 имеет делители: 1, 2, 3, 5, 6, 10, 15 и 30. Сфенические числа образуют последовательность: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, … . Примером двух последовательных сфенических чисел являются 230 (230=2·5·23) и 231 (231=3·7·11). Примером трёх последовательных сфенических чисел являются 1309 (1309=7·11·17), 1310 (1310=2·5·131) и 1311 (1311=3·19·23). Более чем трёх последовательных сфенических чисел быть не может, поскольку каждое четвёртое натуральное число будет делиться на 4.
***