Читаем Научная революция XVII века полностью

«Основными свойствами света являются следующие: 1) он распространяется во все стороны вокруг тел, называемых светящимися, 2) на всевозможные расстояния, 3) мгновенно и 4) обычно по прямым линиям, называемым лучами света; 5) некоторые из этих лучей, исходя из различных точек, могут собираться в одну и ту же или 6) исходя из одной точки, расходиться в различные пункты; 7) исходя из разных точек и идя к разным точкам, лучи эти могут проходить через одну и ту же, не мешая друг другу, 8) но иногда, когда сила их значительно неравна и превосходство одних над другими в этом отношении весьма велико, они могут мешать друг другу; 9) направление этих лучей может быть изменено посредством отражения или 10) преломления; 11) сила их может быть увеличена или 12) уменьшена благодаря различным положениям или качествам передающей их материи» [7, с. 231].

Как следует из свойства 8), Декарт не имел ясного понятия о том, что сегодня называют принципом суперпозиции, т. е. в данном случае, что пересекающиеся световые лучи не влияют друг на друга, хотя в объяснении предыдущего свойства он указывает, что «каждая из частиц второго элемента способна получать в одно и то же время несколько различных движений» [7, с. 234]. Эта двойственность позиции Декарта, которая выражается уже в том, что он постулирует для света два противоположных свойства — седьмое и восьмое, определяется тем, что его теория занимает промежуточное положение между корпускулярной теорией истечения и волновой теорией. И хотя главным материальным агентом у него является частица второго элемента, свет не есть движение этих частиц, а лишь передача склонности к движению от частицы к частице. Но, поскольку наглядно объяснить, что такое этот конатус непросто, Декарт прибегает к вполне наглядным чисто корпускулярным аналогиям (в данном случае к пересекающимся трубам, по которым движется воздух), и сразу многообещающая тонкость его представлений утрачивается.

Вообще, физическая оптика Декарта весьма своеобразна, но, несмотря на ошибочность многих представлений, она удивительным образом сработала при выводе двух фундаментальных положений: закона преломления и отражения, а также объяснения образования радуги. Строго говоря, слово «сработала» здесь не вполне уместно, потому что в действительности Декарт не выводил закона преломления из своих качественных представлений, он лишь впоследствии приспособил свою теорию для объяснения уже найденного им соотношения. Каким же именно образом он к нему пришел, до сих пор остается загадкой. Долгое время авторство Декарта в установлении закона преломления вызывало сомнения, многие ученые, в том числе Христиан Гюйгенс, обвиняли его в плагиате и заимствовании формулировки закона у Виллеброрда Снелля, который открыл его в 1621 г. Однако это открытие оставалось неизвестным вплоть до 1632 г., когда Голиус обнаружил рукопись Снелля, содержащую этот закон. Тем не менее сегодня существуют веские доказательства того, что Декарт независимо от Снелля открыл закон преломления в 1626 г., когда друг Декарта Клод Мидорж изготовил для него гиперболическую линзу, лишенную сферической аберрации и рассчитанную исходя из декартова закона синусов для преломления.

В 1637 г. в «Диоптрике» Декарт дает уже пространственное доказательство закона преломления, основанное прежде всего на его двух законах механики, а именно на принципе инерции и на законе сохранения количества движения. Несмотря на то что (как уже говорилось выше) количество движения он понимал как скалярную величину, конатус, или стремление имело у него всегда векторный характер и могло быть разложено на компоненты.

Для вывода своего закона Декарт моделирует свет с помощью теннисного мяча, падающего на плоскую поверхность. Сначала он выводит закон отражения и для этого представляет, что мяч падает на поверхность СЕ, которая мыслится идеально твердой и неподвижной. Предположим, говорит Декарт, что теннисный мяч, посланный ракеткой в точке А, двигается равномерно по линии АВ и попадает на поверхность СЕ в точке В. Разложим его стремление на две составляющие — АС, которая перпендикулярна поверхности, и АН, ей параллельную. Так как мяч, ударившись о поверхность СЕ, не сообщит ей никакого движения, скорость его после отскока не изменится по величине, и он по прошествии времени, равному тому, которое ему потребовалось для прохождения отрезка АВ, окажется где-то на окружности, описанной радиусом АВ вокруг точки В. После отскока составляющая стремления АН, параллельная поверхности СЕ, останется без изменений (AH = HF), а вертикальная составляющая АС изменит свой знак на противоположный. Итак, горизонтальная составляющая определит прямую FE, находящуюся от вертикали НВ на расстоянии HF. Ясно, что по прошествии нужного времени мяч должен будет находиться на пересечении этой прямой с окружностью, т. е. в точке F. Отсюда с необходимостью следует, что угол падения АВН равен углу отражение HBF.

К закону отражения Декарта

К закону преломления Декарта 

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже