Однако задача, которую поставил перед собой Декарт, далеко не ограничивалась введением новой, более удобной символики, хотя и это было делом первостепенной важности. Задача была значительно более глубокой и принципиальной: как соотнести алгебраические понятия и геометрические построения, чтобы затем исключить из алгебры необходимость в таких построениях. Например, любое квадратное уравнение или выражение вида (a + b)2
= а2 + 2ab + b2 изображалось с помощью квадратов, связанных, как показано на рисунке. Эта традиция вела свое начало от Евклида, но даже и Виет постоянно иллюстрировал свои алгебраические выводы геометрическими построениями.Главная трудность состояла в том, чтобы дать многочленам любых степеней наглядное геометрическое изображение. Для a2
таким изображением являлся квадрат, для a3 — куб, но уж четвертая степень представляла неодолимую проблему. Декарт решил ее, поставив степени любого числа в соответствие не фигуру или тело, а отрезок, сделав таким образом все величины, входящие в любое алгебраическое выражение, однородными. Вот как сам он излагает свою идею:«Подобно тому как вся арифметика состоит только в четырех или пяти действиях, именно в сложении, вычитании, умножении, делении и извлечении корней, которое можно считать некоторого рода делением, подобно этому и в геометрии для нахождения искомых отрезков надо только прибавлять или отнимать другие; или, имея отрезок, который я для лучшей связи с числами буду называть единицей и который вообще можно выбирать по произволу, и имея, кроме него, два других отрезка, надо найти четвертый, который так относится к одному из этих двух, как другой к единице,— это равносильно умножению; или приходится находить четвертый, который так относится к одному из двух данных, как единица к другому,— это равносильно делению; или, наконец, случается находить одно или несколько средних пропорциональных между единицей и другим отрезком — это равносильно извлечению корня. И я нисколько не колеблюсь ввести эти арифметические выражения в геометрию, чтобы мое изложение было более понятным» [11, с. 11—12].[15]
Поясним сказанное Декартом для случая умножения. Пусть дано: отрезок АВ, равный 1, отрезок BD, равный а, отрезок ВС, равный b. Требуется найти отрезок, равный произведению BD•BC, т. е. ab. Для этого на сторонах произвольного угла откладываем отрезки АВ, ВС и BD так, как это показано на рисунке. Точки А и С соединяем и проводим через D прямую DE, параллельную АС. Из подобия треугольников ABC и ADE находим: AB/BD = BC/BE, или AB•BE = BC•DB, так как АВ = 1, то BE = BC•DB = ab.
Естественно, если a—b = x, то мы получаем для x2
геометрическое представление в виде отрезка. Беря затем в качестве сомножителей x2 и x, получаем представления для x3 и т. д.Проблема однородности вообще была чрезвычайно существенной при становлении классической науки XVI—XVII вв. Ученым приходилось преодолевать традиции античного мышления, которые часто сковывали продвижение вперед. Правила составления отношений требовали, чтобы эти отношения были составлены лишь из однородных величин, причем это требование было обязательным не только в математике, но и в физике. Выше уже говорилось, что для античных и средневековых последователей Аристотеля было совершенно неприемлемым мыслить, скажем, скорость как отношение пути ко времени. Все развитие науки о движении было тесно связано с преодолением традиционной ситуации, когда понятие скорости выводилось интуитивно из отношений путей, проходимых за одинаковое время, или же из отношений времен, затраченных на прохождение одинаковых путей. В математике необходимость оперировать в отношениях лишь с однородными величинами была постулирована у Евклида (V книга «Начал»), и в этом смысле неправомерно, например, рассматривать в алгебре отношение a2
/b3, поскольку величина в числителе связывается с плоской фигурой — квадратом, а величина в знаменателе — с пространственной фигурой, кубом. Декарт же, вводя числовые показатели степени, утверждал, что квадрат какой-либо величины не отличается от самой этой величины в том смысле, как геометрическая прямая отличается от геометрического квадрата, а в действительности «корень, квадрат, куб и проч. являются не чем иным, как последовательно пропорциональными величинами, которым всегда предшествует наперед заданная единица» [2, с. 158—159].