Читаем Научная революция XVII века полностью

Обсуждая роль дискретности в физических представлениях Средневековья, Дрейк подчеркивает, что для них была характерна существенная разница между физическим и математическим понятиями мгновения. Лучшим примером этому является проблема «первого мгновения» движения, т. е. можно ли считать первое мгновение движения идентичным с последним мгновением покоя? Если да, то такое заключение содержит противоречие, ибо в таком случае тело будет одновременно находиться и в состоянии покоя, и в состоянии движения. Если мгновение мыслится математически, то задача не имеет смысла, однако физическое мгновение всегда имеет некоторую длительность, как бы мала она ни была, поэтому проблема решается просто — легко отделить последнее мгновение, когда тело еще находится в покое, от первого мгновения, когда тело уже движется. С таким представлением, замечает при этом Дрейк, вполне согласуется молчаливое предположение средневековых физиков, что физическое время имеет квазиатомную структуру и что физические моменты делимы только потенциально {5, с. 31}.

Возвращаясь к задаче о падении тела, теперь можно показать, что Буридан решал ее в чисто аристотелевском стиле. Действительно, если бы движение вниз зависело только от веса, то, как и предполагал Аристотель, оно совершалось бы с неизменной скоростью, т. е. было бы равномерным. Таковым, согласно Буридану, является движение вниз в начальный момент движения, когда импетус еще не оказывает на движение (и скорость) никакого воздействия. В дальнейшем накопление импетуса и приращение скорости идет последовательными квантовыми скачками, а не совершается непрерывно. Графиком скорости такого ускоренного движения была ступенчатая функция, а не треугольник, и, возможно, именно вследствие различия между физическими (т. е. реальными) явлениями и явлениями, мыслимыми в абстракции, представители Парижской школы не применяли найденные ими треугольные конфигурации к анализу реального падения. (Отметим, что, когда Орем обсуждает действительное движение, он использует ступенчатые функции, как в случае движения с бесконечно увеличивающейся скоростью или в случае движения, длящегося бесконечно.)

Первым, кто использовал треугольную конфигурацию для анализа реального падения, был Галилей.

2

Галилео Галилей родился в Пизе 15 февраля 1564 г. в знатной, но обедневшей семье флорентийца Винченцо Галилея. Винченцо был высокообразованным человеком, профессиональным музыкантом, а также торговцем. Некоторые его сочинения по теории музыки пользовались известностью и после его смерти, а его обширные познания в языках и математике были общеизвестны. Галилей унаследовал от отца вместе с любовью к музыке и некоторые черты характера, в том числе независимость и агрессивность[11].

Галилей получил начальное образование дома под руководством некоего Якопо Боргини, но затем отец отдал его в иезуитскую школу знаменитого монастыря св. Марии в Валломброзо (к этому времени семья переехала во Флоренцию). Галилей отнесся к своему пребыванию в монастыре гораздо серьезнее, чем того желал Винченцо, и в 1578 г. вступил в орден как новиций. Однако отец Галилея вовсе не желал видеть своего сына монахом и забрал его домой под предлогом того, что тот нуждается в лечении глаз. Некоторое время Винченцо сам занимается с сыном, а впоследствии домашними учителями Галилея вновь становятся монахи из монастыря Валломброза.

ГАЛИЛЕО ГАЛИЛЕЙ

В 1581 г. Галилей поступил на факультет искусств Пизанского университета, чтобы стать врачом. Его семья оставалась жить во Флоренции, в то время как он сам обосновался у сестры своей матери в Пизе. В университете он слушал лекции Франческо Буонамико (по астрономии) и Джироламо Боро (по физике), которые строго придерживались воззрений Аристотеля, а также лекции Андреа Чезальпино по медицине. Математики в университете не читали — кафедра математики оставалась вакантной в течение почти всего времени пребывания Галилея в университете. Но случилось так, что к медицине Галилей особого интереса не выказал, зато в нем обнаружился неподдельный интерес к математике. Он сам нашел себе учителя: во время летних каникул 1583 г. он попросил Остилио Риччи, близкого друга своего отца и учителя математики при Тосканском дворе, помочь ему в овладении этой наукой. Риччи согласился, и они приступили к занятиям втайне от Винченцо. Страсть, с которой Галилей занимался математикой, заставила Риччи обратиться к его отцу и убедить того разрешить продолжать занятия. А у Риччи было чему поучиться: ученик Николо Тартальи, он передал Галилею свою любовь к произведениям греческих математиков, и в первую очередь к Архимеду, который в глазах Тартальи и его учеников был идеалом, соединяющим в себе выдающиеся способности теоретика и экспериментатора. Его преподавание математики включало занятия военной и строительной механикой, астрономией, физикой и другими естественными науками. Вскоре Галилей настолько освоился с новой наукой, что уже сам мог вести самостоятельные исследования.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже