«Теорема II. Предложение II. Если тело, выйдя из состояния покоя, падает равномерно-ускоренно, то расстояния, проходимые им за определенные промежутки времени, относятся между собой как квадраты времени» [16, II, с. 249]. Свое доказательство Галилей вновь иллюстрирует чертежом, он говорит: «Изобразим промежуток времени, начинающийся с какого-либо мгновения А, линией АВ и представим себе, что AD и АЕ суть некоторые части этого промежутка времени. Пусть, далее HI будет линией, вдоль которой падающее тело, вышедшее из состояния покоя, движется равномерно-ускоренно, HL — расстояние, пройденное в течение первого промежутка времени AD, HM — расстояние, пройденное в промежуток времени АЕ» [16, II, с. 250].
Затем Галилей несколько усложняет чертеж, введя горизонтальные отрезки OD и РЕ, представляющие максимальную скорость, приобретенную телом к моменту D и Е соответственно. Для доказательства теоремы он пользуется сперва правилом средней скорости. Слегка модернизируя запись и введя vD
cp и vEср, обозначающие соответственно среднюю скорость движения к моменту D и Е, получаем:и последнее отношение равно: PE/OD = AE/AD, т. е. скорости пропорциональны времени движения; тогда, с одной стороны, MH/LH =
Комбинируя эти две пропорции, получаем: MH/LH = (AE/AD)∙ (AE/AD) = AE2
/AD2, «следовательно, расстояния относятся, как квадраты промежутков времени, что и требовалось доказать».После этого легко доказывается, что если «скорость возрастает в равные промежутки времени как простой ряд последовательных чисел, то расстояния, пройденные за те же промежутки времени, относятся между собой как последовательные нечетные числа» [16, II, с. 251]. Этот результат, который Галилей приписывает исключительно себе, на самом деле был получен ранее средневековыми физиками, но они опять же не применяли его к исследованию реального движения и не увидели в нем квадратичного закона падения, легко из этого результата получаемого.
Дальнейшие беседы Третьего дня касаются проблемы движения тел по наклонной плоскости, и получающиеся результаты являются следствиями установленного ранее закона падения. Среди них имеются два замечательных утверждения, первое из которых относится к проблеме наискорейшего спуска — одной из наиболее знаменитых задач конца XVII в., а второе содержит наиболее близкую к современной формулировку принципа инерции. Задача наискорейшего спуска может быть сформулирована так: по какой траектории, соединяющей две точки, находящиеся на разных высотах, должно двигаться тело, чтобы переместиться из верхней точки в нижнюю за минимальное время? Постановка и решение этой проблемы положили начало вариационному исчислению. Инфинитезимальными методами было показано, что брахистохроной, т. е. линией наискорейшего спуска, будет не отрезок прямой, соединяющей обе точки, а проходящая через них циклоида. Решение было получено благодаря усилиям самых выдающихся математиков эпохи, включая Иоганна (в первую очередь) и Якоба Бернулли, Лейбница, Лопиталя, Гюйгенса и Ньютона. Галилей близко подошел к правильному результату и в замечании к теореме XXII указал, «что быстрейшее движение от одной конечной точки до другой происходит не по кратчайшей линии, какой является прямая» [16, II, с. 300]. Без помощи методов дифференциального исчисления он, естественно, не мог установить, что траекторией спуска является дуга циклоида, вместо этого он говорит о дуге окружности.
Виолетта Павловна Гайденко , Георгий Александрович Смирнов
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая научная литература / Научпоп / Образование и наука