Умножили на 5? Хорошо. То, что у вас получилось, умножьте на 2. Сделано? Прибавьте 7.
Теперь в том числе, какое вы получили, зачеркните первую цифру.
Готово? К тому, что осталось, прибавьте 4. Отнимите 3. Прибавьте 9.
Сделали, как я просил? Ну, так я скажу вам, сколько у вас теперь получилось.
У вас получилось 17.
Разве не так?
Хотите еще раз? Давайте!
Задумали цифру? Утройте ее. То, что получилось, опять утройте. Теперь к тому числу, какое вы получили, прибавьте то, которое вы задумали.
Сделано? К полученному прибавьте 5. Зачеркните первую цифру в том числе, которое вы сейчас получили. Зачеркнули? Прибавьте 7. Отнимите 3. Прибавьте 6.
Сказать, какое число у вас теперь в уме? 15.
Угадал? Если не отгадал, вина ваша. Где-нибудь ошиблись в выкладках.
Хотите третий раз попробовать? Извольте, мне не жалко.
Задумали цифру? Удвойте. Полученное снова удвойте. Вновь полученное опять удвойте. Прибавьте то, что задумали. Еще раз прибавьте то, что задумали. Прибавьте 8. Зачеркните первую цифру. От оставшегося числа отнимите 3. Потом прибавьте 7.
У вас теперь 12.
Я мог бы угадать сколько угодно раз и каждый раз безошибочно. Как же я это делаю?
Вы должны подумать о том, что все здесь напечатанное я написал за несколько месяцев до появления книги и, значит, задолго до того, как вы задумали эти числа. Это доказывает, что отгадываемое число не зависит от того, которое вами задумывается. А все-таки: в чем секрет?
Чтобы понять, как выполняется в этих случаях отгадывание, проследите, какие действия я заставляю вас проделывать с задуманными числами. В первом примере вы сначала умножили его на 5; потом то, что получилось, умножили на 2. Значит, вы умножили его на 2 × 5, т. е. на 10. А всякое число, умноженное на 10, дает результат, оканчивающийся нулем. Зная это, я прошу вас прибавить 7; теперь мне известно, что у вас в уме число из двух цифр: первой я не знаю, а вторую знаю — 7. Неизвестную мне первую цифру я прошу вас зачеркнуть. Что же теперь у вас в уме? Конечно 7. Я могу уже назвать вам это число, но я хитер: чтобы запутать следы, я прошу вас прибавлять и отнимать от этой семерки разные числа, а сам про себя проделываю то же самое. И наконец объявляю вам, что у вас получилось 17. Это число у вас обязательно должно получиться, какую бы цифру вы ни задумали.
Второй раз я при отгадывании иду уже другим путем, — иначе вы, пожалуй, слишком рано смекнете, в чем секрет. Я заставил вас задуманное число сначала утроить, потом полученное снова утроить и к результату прибавить задуманное число. Значит, в конце концов, что у вас должно составиться? Легко сообразить: ведь это все равно, что умножить задуманную цифру на 3 × 3 + 1, т. е. на 10. Опять я знаю, что у вас на конце ноль. Ну, а дальше по-старому: прибавляется какая-нибудь цифра, зачеркивается первая неизвестная, а с остающейся, которую я знаю, проделываются для заметания следов разные выкладки.
Третий случай. И здесь то же самое, только на иной лад. Я прошу вас задуманную цифру удвоить. Полученное опять удвоить и вновь полученное удвоить снова. А к результату дважды прибавить задуманную цифру. Что же все это дает? Дает вашу цифру, умноженную на 2 × 2 × 2 + 1+ 1,т. е. на 10. Остальное понятно само собою.
Теперь вы не хуже меня сможете проделывать такие же опыты с теми из ваших товарищей, которые не читали этой книжки. А, может быть, придумаете и собственные способы отгадывания. Дело нехитрое.
118. Отгадчик поневоле
Нелегкое дело — отгадать, какая монета зажата в руке вашего товарища. Зато не отгадать как будто очень легко. Я так думал до тех пор, пока не убедился, что бывают случаи, когда не отгадать гораздо труднее, чем отгадать. Хотите послушать, как я был однажды отгадчиком поневоле: и рад бы не отгадать, да никак не удавалось — все отгадывал безошибочно?
— Хочешь отгадать монету, которую я спрячу? — спросил меня раз старший брат.
— А как это? Я не умею.
— Тут уметь нечего: говори, что на ум придет, вот и все искусство.
— Это-то просто. Да только я не отгадаю.
— Именно отгадаешь. Ну, начнем. Брат спрятал в спичечный коробок какую-то монету и сунул коробок в мой карман.
— Держи у себя: не скажешь потом, что я подменил монету. Теперь слушай: монеты бывают, ты знаешь, медные и серебряные. Выбирай.
— А почем я знаю, какая монета в коробке?
— Говори, что взбредет в голову.
— Ну, серебряные.
— Серебряные монеты бывают: полтинник, двугривенный, пятиалтынный[3]
и гривенник. Выбери две из них.— Какие хочу?
— Какие хочешь.
— Выбираю двугривенный и гривенник.
— Что же у нас остается? — соображал брат вслух. — Только полтинник и пятиалтынный. Выбери из них одну монету
— Пятиалтынный, — сказал я наобум.
— А теперь загляни в коробок и посмотри, что там.
Я выдвинул коробок, и, вообразите мое удивление, в коробке оказался именно пятиалтынный!
— Но как же я угадал? — приставал я к брату
— Ведь я говорил, совершенно не подумав, — что приходило на ум…
— Я ведь сказал тебе, что тут уметь нечего. Вот попробуй-ка не угадать: это будет мудрено.