Удивительно, что эти немыслимо большие времена жизни протона допускают экспериментальную проверку. Идея опытов опять же проста. В одном кубометре воды содержится примерно 1030
протонов, значит, если протон живёт в среднем именно такое число лет, то в течение года хотя бы один протон кубометра воды должен распасться. Если камеру с водой поместить глубоко под землёй (дабы исключить помехи вызванные проникновением космических лучей) и окружить её датчиками, реагирующими на факт распада протона, то можно таким образом зафиксировать даже единичное событие, например, распад хотя бы одного протона в течение года или 10 лет. В США такую установку (7000 тонн воды, окружённой 2000 фотоумножителей) разместили на месте бывших соляных копей под озером Эри в штате Огайо. Параллельно в Японии в подземной лаборатории Камиока был создан детектор, где 3000 тонн воды просматривались 1000 фотоумножителями. Однако к концу 80-х годов ни одного случая распада протона зафиксировано не было. В 1995 году японская группа построила новый детектор, увеличив массу воды до 50 000 тонн. Наблюдения продолжаются по сей день, но результат поисков распада протона по-прежнему отрицателен. Эти эксперименты с отрицательным результатом, не доказывают, что Сахаров был неправ, но исключили некоторые модели Теории великого объединения. Ведь Сахаров называл время жизни протона порядка 1050 лет, а эксперимент пока что однозначно доказал, что это время жизни не менее 1033 лет.Обращаю внимание на некоторую методологическую параллель: в двухступенчатой конструкции водородной бомбы с использованием "Третьей идеи" возможность достижения искомого эффекта (срабатывания второй ступени и термоядерный взрыв) зависела от деталей процессов, протекающих за миллиардные доли секунды после подрыва атомной бомбы первой ступени. Получение искомой барионной асимметрии Вселенной зависит от деталей процессов (величина нарушения комбинированной чётности 0,6% в первом условии Сахарова, темп расширения Вселенной в момент аннигиляции частиц и античастиц во втором условии, очень большое, но всё-таки конечное определённой величины время жизни протона в третьем его условии) протекающих за ещё более короткое время в первые мгновения существования Вселенной. И при решении обеих этих задач, как и в других своих работах, Сахаров проводит расчёты и оценки, результатом которых становится точный численный ответ.
Наука, конечно, идёт вперёд, и после выхода пионерской работы Сахарова появилось много идей и направлений исследований по проблеме бариогенезиса (возникновения избытка барионов над антибарионами) на начальном этапе существования Вселенной, в том числе модель низкотемпературного бариогенезиса в рамках стандартной теории электрослабых взаимодействий (см. об этом, например, в комментарии В.А. Кузьмина в Собрании научных трудов Сахарова[41]
).В последние годы широко обсуждаются модели бариогенезиса на стадии “reheating” в моделях инфляции (раздувающаяся Вселенная). На характерном для этих моделей начальном почти экспоненциальном раздувании Вселенной "зануляются" по причине стремительного увеличения объёма любые неоднородности. В результате возникает универсальное вакуумно-подобное состояние с положительной гигантской энергией вакуума ("тёмной энергией"). "Жизнь" нашей наблюдаемой Вселенной начинается в момент распада этого универсального вакуумного состояния, превращения вакуумной энергии в горячую материю (отсюда термин "reheating"). Именно на этой стадии "срабатывают" три вышеуказанных условия Сахарова возникновения наблюдаемой барионной асимметрии Вселенной. И на этом же этапе из начальных квантовых неоднородностей вакуума (а никаких других неоднородностей, как было сказано, на стадии раздувания быть не может) возникают те затравочные неоднородности вещества, из которых позже образовались галактики и звёзды. — О соответствующей работе Сахарова — см. в следующем разделе.
"Начальная стадия расширения Вселенной и возникновение неоднородности распределения вещества"[42]
Эта первая работа после возвращения Сахарова в "большую науку" была выполнена в 1963—1964 гг. Каким образом возникли столь неоднородные в пространстве скопления вещества как галактики и скопления галактик, если на начальном этапе эволюции Вселенной всё было совершенно однородно? Работа посвящена этому кругу вопросов. Известно, что равномерное распределение в пространстве тяжёлого вещества неустойчиво: случайное увеличение концентрации в одном месте приводит к ещё большему накоплению здесь окружающего вещества, падающего на этот центр притяжения. Но остаётся вопрос, откуда взялось это первоначальное случайное увеличение концентрации? В своих "Воспоминаниях" (Часть I, Глава 18) Сахаров пишет: