Почти каждый случай выделения редкоземельных элементов – от иттрия в 1794 г. до прометия в 1945 г. – был крайне нудным и утомительным занятием. Все эти открытия (кроме достаточно аномального радиоактивного прометия) тем не менее имеют одну важную отличительную особенность – все они были сделаны серьезными и основательными химиками. Здесь не было никакой зависимости от уникальных технологий, почерпнутых из физики, как в случае с некоторыми другими группами элементов: щелочными металлами, открытыми Дэви электролитическим способом; инертными газами, обнаруженными Рамзаем в сиянии газоразрядных трубок; трансурановыми элементами, полученными на ускорителе элементарных частиц в Беркли. Выделение редкоземельных элементов было результатом обычных традиционных химических процедур. И самая типичная из них состояла в растворении исходного материала в кислоте, в результате получался раствор, содержащий смесь солей. Затем они медленно выпаривались так, что соли каждого элемента кристаллизовались по очереди. Тщательное и многократное повторение этого процесса – иногда по нескольку тысяч раз – позволяла химикам в конечном итоге отделить очень сходные вещества друг от друга и затем выделить из них новые, еще неизвестные элементы. И, как сухо заметил один историк химии, названный процесс был «грандиозным предприятием, которое в настоящее время вряд ли кто-то согласился бы поддерживать грантами».
Каким бы монотонным ни был такой труд, подобные длительные проекты были настоящей находкой для определенного типа исследователей. Швед Карл Мосандер хвастался своим совершенным незнанием химической теории и на практике продемонстрировал, насколько несущественным было оно в такого рода экспериментах, открыв больше редкоземельных элементов, чем кто-либо другой, попросту благодаря упорному сидению за лабораторным столом на протяжении многих и многих часов. В ретроспективе, при наличии имеющихся у нас сегодня знаний в теоретической и практической химии, не так уж и трудно собрать по крупицам истории открытия редкоземельных элементов. По крайней мере, сделать это сейчас словами во много раз легче, чем когда-то собирать по крупицам сами названные элементы, однако, по-видимому, подобное предприятие было бы не менее скучным и однообразным. Поэтому я не стану тратить время, в подробностях разбирая биографию каждого из них, а выберу одного или двух в качестве представителей всего ряда. В любом случае разница между ними незначительна. Они ведут себя сходным образом и применяются примерно в одинаковых областях. В некоторых сферах применения они приносят ощутимую пользу. Редкоземельные элементы широко, хотя и достаточно экономно используются в муравлении керамики, во флуоресцентных лампах, в телеэкранах, лазерах, сплавах и огнеупорных материалах. Но в большинстве случаев не имеет принципиального значения, какой конкретно из них выбрать, и потому выбор, как правило, совершается почти произвольно. Хотя, конечно, не всегда. В ряде случаев какой-то один из них демонстрирует определенные преимущества над всеми остальными.
Если вы возьмете банкноту в 5 евро и подержите ее под ультрафиолетовым светом, тусклые желтые звезды, которые проступают сквозь классическую арку на лицевой стороне банкноты, внезапно начнут излучать ярко-красное свечение. А на обратной стороне римский трехъярусный мост как будто зависает в призрачно зеленоватом свете над рекой цвета индиго. Специальные чернила, используемые в банкнотах с целью предотвращения подделок, начинают светиться под мощным воздействием ультрафиолета.
Точный состав используемых в данном случае веществ, конечно, хранится в строгой тайне европейскими банками. Тем не менее в 2002 г., буквально через несколько месяцев после того, как евро вошли в оборот, двое голландских химиков решили поразвлечься и провести необычное спектроскопическое исследование. Фреек Суйджвер и Андриес Мейджеринк из Утрехтского университета направили ультрафиолетовый свет на банкноты евро и затем в точности описали те оттенки видимого света, который банкноты стали в результате излучать. На основании проведенного эксперимента ученые заявили, что излучавшийся банкнотами красный свет вызван наличием ионов редкоземельного элемента европия, связанного в комплекс с двумя молекулами ацетоноподобного вещества. Относительно других излучавшихся цветов у них не было такой уверенности, но они предположили, что зеленый цвет может быть вызван присутствием еще более сложных ионов, в которых европий соединен со стронцием, галлием и серой, а голубой – результат соединения европия с окислами бария и алюминия. На этой стадии ученые приостановили свои эксперименты, предупредив других коллег, у которых мог возникнуть соблазн последовать их примеру, что «любые исследования причин, вызывающих свечение банкнот евро, могут рассматриваться как нарушение закона».