Традиционно историю математики начинали с VI-V вв., т. е. с возникновения в Греции нового типа математических изысканий, составивших в дальнейшем сущность математики как теоретической науки. Исследования последних ста лет пролили свет на долгую предысторию математики, представленную культурами Древнего Востока, прежде всего — Шумера, Египта и Вавилона, затем — Индии и Китая. В этих культурах было сделано множество важных открытий, позволявших решать весьма сложные задачи в области строительства, землемерия, составления календаря, распределения и учета рабочей силы и продуктов и т.п. Но сопоставление с математикой Древней Греции отчетливо показывает сугубо эмпирический и вычислительный характер восточной математики. Наиболее развитая ее ветвь, вавилонская, выросшая, как и все прочие, из практической сферы, в ходе своего развития дошла до решения задач, далеко выходящих за пределы жизненных потребностей. В писцовых школах Вавилона решались квадратные уравнения, которые, хотя и были сформулированы в численном виде и носили характер хозяйственных задач, для практических нужд были явно бесполезны. И все же вавилонская математика (равно как и астрономия) оставалась вычислительной, а не теоретической: «В подавляющем большинстве случаев конечная цель исследования заключалась в составлении школьной задачи и указании способов ее решения».[499]
Коренное отличие греческой математики от самых сложных восточных вычислений состоит в том, что в ней впервые появляются постановка проблем в общем виде и дедуктивное доказательство — качества, позволяющие отделить математическую науку от занятий числами вообще, начинающихся с первых систем устного счета, т. е. действительно с доистории. Без учета этого отличия, на которое неоднократно указывали ведущие специалисты,[500]
историю математики действительно пришлось бы начинать с истории устного счета, ибо критерий, отделяющий науку от донауки, был бы утрачен. Хотя этот критерий, как и многие другие, в какой-то степени условен, он представляется нам важным и плодотворным. Обращаясь к проблеме контактов с Востоком, следует помнить о том, что в греческой математике возник комплекс новых качеств, которых на Востоке не было. В сущности, называя греческую геометрию и восточные вычисления одним и тем же словом «математика», мы имеем в виду разные вещи.История этой проблемы показывает, что Восток нередко рассматривался едва ли не как родина греческой математики. Объясняется это, вероятно, не только свидетельствами античных авторов о восточных заимствованиях в математике, но и отсутствием письменных источников, касающихся греческой практической и вычислительной математики VIII—VI вв., т. е. того фона, на котором возникли первые теоретические изыскания Фалеса и Пифагора. До нас не дошли ни хозяйственные тексты этой эпохи, ни учебные задачи, которые в таком изобилии находят на египетских папирусах и вавилонских табличках, и об уровне практической математики греков можно судить лишь косвенно, по остаткам архитектурных памятников и инженерных сооружений.[501]
Открытия Фалеса и Пифагора казались многим возникшими едва ли не на пустом месте — отсюда естественное стремление видеть в них результаты заимствования. Неясность причин зарождения теоретической математики и удивительная быстрота, с которой она сформировалась, заставляли обращаться к древним культурам Востока, способным, как казалось, объяснить этот удивительный феномен.Сами греки, как уже отмечалось, были склонны приписывать восточное происхождение многим областям своей культуры, в том числе и математике.[502]
Авторы V-IV вв. единодушно называют родиной геометрии Египет. Так, Геродот говорит, что геометрию создали египтяне, движимые практическими нуждами землемерия и администрирования (11,109). Евдем Родосский, автор первой истории геометрии, также считал, что именно практические потребности привели к возникновению геометрии у египтян и арифметики у финикийцев (fr. 133). По его словам, Фалес, побывав в Египте, первым принес геометрию в Грецию, а Пифагор впервые превратил ее в теоретическую науку. Аристотель, напротив, полагал, что и теоретическая математика возникла в Египте, среди жрецов, имевших достаточно времени для занятий проблемами, не связанными с жизненными нуждами (Met. 981 b 23). Особый интерес представляет фрагмент Демокрита (fr. 14 Luria), в котором он утверждает, что никто не превзошел его в построении линий с доказательствами, даже египетские гарпедонапты («натягиватели веревок» — т. е. землемеры). По-видимому, престиж египетской геометрии был действительно высок, если талантливый математик Демокрит ставил себе в заслугу победу в соревновании с египетскими землемерами.