В сущности для истории науки эксперимент Пифагора едва ли не важнее той конкретной закономерности, которая была установлена с его помощью. Но на современников и последователей Пифагора куда большее впечатление произвел тот факт, что вещь, казалось бы, неуловимая — музыкальная гармония — подчиняется простым числовым соотношениям. Хотя арифмология существовала у греков задолго до Пифагора,[705]
пифагореизм, несомненно, придал импульс этим представлениям и способствовал их укоренению не только в народных суевериях, но и в «высокой» культуре. Арифмологические спекуляции играют большую роль у Филолая и его ученика Еврита, а затем и у Платона. Правда, стоит заметить, что арифмология коснулась пифагорейцев в очень разной степени. Большинство ранних представителей школы (до Филолая) не проявляли особой предрасположенности к мистике чисел. Какова была позиция самого Пифагора и принадлежат ли ему те странные уподобления: справедливости — четверке, брака — пятерке, здоровья — семерке, которые мы встречаем в акусматической традиции, ответить нелегко. Во всяком случае, ясно, что он сделал шаг в этом направлении, выдвинув идею небесной гармонии, которой подчиняется движение небесных светил. Отсюда очень близко до мысли, что не только природа подчиняется числу, ~ с его помощью можно выразить и такие «неисчисляемые» вещи, как справедливость и здоровье.Как и можно было ожидать, эксперимент Пифагора повлек за собой серию новых, более сложных опытов. Описание одного из них сохранилось у Аристоксена. По его словам, Гиппас «приготовил четыре медных диска таким образом, что диаметры их были равны, а толщина первого диска была на одну треть больше второго, в полтора раза больше третьего и в два раза больше четвертого. Когда по ним ударяли, то получалось некое созвучие» (fr. 90). Мы видим, что Гиппас изготовил диски в соответствии с той же «музыкальной» пропорцией (12:9 = 8:6) и получил те же интервалы, что и Пифагор. Тем самым он показал, что найденные соотношения зависят не от материала звучащего инструмента, а от его размеров, т. е. носят общий характер. Заметим, что опыты Пифагора и Гиппаса представляют собой пример последовательных экспериментов на разном материале и со специально созданными для этого предметами. Подобный тип исследования у греков отрицал даже такой знаток античной науки, как Гейдель,[706]
хотя в своей книге о ней он посвятил экспериментам целую главу.Повторяя опыт с теми же пропорциями, Гиппас, судя по всему, интересовался не только математической стороной вопроса. Опираясь на установленную Пифагором зависимость высоты звука от длины струны, Гиппас продвинулся дальше и попытался выяснить, какова физическая природа того, что звуки бывают высокими и низкими. Из пассажа, содержащегося у Теона Смирнского и восходящего, вероятно, к Аристоксену,[707]
можно заключить, что этот вопрос, как и физика звука в целом, интересовал Гиппаса:?????? ?? ??? ????????? ?? ??? ??? ????? ?????? ?????????, ?? ?? ??? ???????, ?? ?? ??? ???????? ??? ???????, ?? ?? ??? ??????? [??? ???????]. ????? ?? ? ?????????, ?? ????, ??? ?? ???? ??? ???????????? "??????? ??????????? ????? ??????????. ??? ???????? ?? ???? ??? ??? ?????????? ??' ?? ?? ????????? <...> ?? ???????? ????????? ?????? ????????? ????????? ??' ??????? (Theon Sm. Exp., p. 59.4 f).[708]
Лас из Гермионы и Гиппас[709]
названы здесь среди тех, кто «получал» гармонические интервалы с помощью ???????? ??? ???????, в частности быстрых и медленных движений. После лакуны в тексте у Теона описывается целая серия экспериментов. Первый из них производится с сосудами, один из которых был пустым, а три других заполненными водою соответственно на половину, четверть и треть. Когда ударяли по пустому и одному из заполненных сосудов, они давали созвучие октавы, кварты и квинты. Далее тому же экспериментатору, имя которого в тексте не названо, приписывается опыт, схожий с Пифагоровым, но не с одной струной, а с двумя, и аналогичный эксперимент с сирингой (Ехр., р. 59.21-60.6). Отметим сразу же, что если производить опыт с сосудами так, как его, описывает Теон, нужный результат не будет достигнут, ибо получающиеся интервалы будут меньше октавы, квинты и кварты. Соответствующие интервалы могут быть получены в том случае, когда будет резонировать столб воздуха, находящийся внутри сосуда.[710] Что касается опыта с двумя струнами, то физически он вполне правилен.